English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4217788      Online Users : 517
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/20483


    Title: 利用熱化學氣相沉積法生成奈米碳管及應用於氣體感測器
    Other Titles: Growth of Carbon Nanotubes by Thermal Chemical Vapor Deposition Method and Application as Gas Sensor
    Authors: 葉嘉宏
    Chia-Hung Yeh
    Contributors: 鄧宗禹
    Walter Den
    東海大學環境科學與工程學系
    Keywords: 熱化學氣相沉積;奈米碳管;氣體感測器;有機金屬裂解法;溶膠凝膠法;
    Thermal chemical vapor deposition;Carbon nanotube;Gas sensor;Phenol;Metal organic decomposition;Sol-gel
    Date: 2012
    Issue Date: 2013-01-03T06:00:47Z (UTC)
    Abstract: 現今的環境工程領域中,奈米碳管或奈米碳材料廣泛被研究及應用於去除水中污染物,然而在奈米碳管中於氣態污染物的應用研究相對較少。一般以氣相層析儀或高效能液相層析儀作酚氣體檢測分析,雖具有高靈敏度、高準確性,這些分析方法尚有一些缺點,如體積龐大、儀器成本高、檢測速度慢。然而,以奈米碳管或奈米碳材製成氣體感測器優點,如體積小及檢測快速。因此,應用奈米碳管為酚類氣體感測器可改善及發展成具有重要意義。本研究目的在於建立一套最佳的方法來生成奈米碳管,將此製作一可應用為氣體感測元件,將此元件作氣體感測之初步測試。本研究分為三個階段實驗,第一階段分別以三種不同披覆催化劑之方法來披覆催化於載體表面(溶膠凝膠法、蒸鍍法、有機金屬裂解法)。第二階段於常壓狀態下,以熱化學氣相沉積法作生成奈米碳管之研究。第三階段,氣體感測器之感測研究,以酚氣體作靈敏度感測測試。這三個主要的研究結果顯示,第一階段,以蒸鍍法披覆比溶膠凝膠法及有機金屬裂解法均勻;另外以有機金屬裂解法產生金屬結晶顆粒效果最佳。第二階段,以有機金屬裂解法在熱化學氣相沉積法中為生成奈米碳管方法中生成密度及產率為最佳。利用掃描式電子顯微鏡及穿透式電子顯微鏡,觀察其奈米碳管結構圖,在奈米碳管的層與層之間距為0.34 nm,直徑為42.8 nm,中空結構為10.5 nm,而其長度為nm到μm之間。最後階段研究結果發現,以奈米碳管作氣體感測器,於高濃度(1000 ppmv)狀態下酚氣體,對其靈敏度可達到13%。本研究結論,於常壓狀態下利用熱化學氣相沉積法,以有機金屬裂解法生成奈米碳管於載體上,為最佳生成方法。另外,奈米碳管對於高濃度酚氣體之氣體感測器中,具有高靈敏度。這將有助於改善氣體感測器在未來應用上的研究。
    In the current environmental engineering field, carbon nanotubes (CNT) or carbon nano-materials are widely studied and applied to treat water pollutants. There are relatively few researches in the application of carbon nanotubes in gaseous pollutants, particularly as a sensor device for organic vapors. Although gas chromatography or high-performance liquid chromatography is commonly used to test and analyze gas-phase phenol because of its high levels of sensitivity, these analytic methods are expensive and time-consuming. Gas sensors made of CNTs or carbon nano-materials can provide relatively inexpensive and rapid testing time. Therefore, the overall objective of this research is to develop an optimal method to grow CNTs that can enhance the sensitivity of gas sensors. Three studies were carried out for three research goals: 1) “Substrate Preparation Study” was to develop the best coating method to prepare substrate with three coating catalyst methods (i.e., sol-gel method, vapor deposition method, and metal organic decomposition method); 2) “CNT Growth Study” was to develop the optimal CNT growth conditions using thermal chemical vapor deposition (TCVD) process under atmospheric pressure; 3) “Gas Sensor Sensitivity Study” was to perform preliminary sensitivity test of gas sensors for phenol gas.The results of these studies show three primary findings. First, while vapor deposition method was a better method than MOD and the sol-gel method in terms of surface uniformity, MOD was a better method in terms of metal particle distribution over the substrate surface. Second, MOD combined with TCVD was a better method in terms of productivity and density of CNT. Observing the image of MWCNT structure using electron microscopes, the MWCNT layer and the layer spacing was 0.34 nm, the average outer and inner diameters were 42.8 nm and 10.5 nm, and the scale of the length ranged from hundreds of nanometer to several micrometers. The result of the last part of the study showed that the gas sensor sensitivity can achieve up to 13% in the high concentration of phenol gas (1000 ppmv).This research concludes that the optimal method to grow CNT was to use MOD to prepare substrate and to use TCVD-atmospheric pressure. In addition, the synthesized CNTs can provide the high sensitivity of gas sensor for high concentration of phenol gas, which can contribute to the improvement of the quality of gas sensor in the future.
    Appears in Collections:[環境科學與工程學系所] 碩博士論文

    Files in This Item:

    File SizeFormat
    100THU00518010-001.pdf12726KbAdobe PDF256View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback