English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4202294      Online Users : 649
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/21520


    Title: An annealed chaotic competitive learning network with nonlinear self-feedback and its application in edge detection
    Authors: Lin, J.-S., Tsai, C.-T., Lee, J.-S.
    Contributors: Department of Computer Science, Tunghai University
    Keywords: chaotic competitive learning network;Chaotic dynamic;Competitive learning network;Edge detection;Simulated annealing
    Date: 2001
    Issue Date: 2013-05-14T09:08:09Z (UTC)
    Abstract: An unsupervised parallel approach called Annealed Chaotic Competitive Learning Network (ACCLN) for the optimization problem is proposed in this paper. The goal is to modify an unsupervised scheme based on the competitive neural network using the chaotic technique governed by an annealing strategy so that on-line learning and parallel implementation to find near-global solution for image edge detection is feasible. In the ACCLN, the edge detection is conceptually considered as a clustering problem. Here, it is a kind of competitive learning network model imposed by a 2-dimensional input layer and an output layer working toward minimizing an objective function defined as the contextual information. The interconnection strength, composed by an internal state and a transient state with a non-linear self-feedback manner, is connected between neurons in input and output layers. To harness the chaotic dynamic and convergence process, an annealing strategy is also embedded into the ACCLN. In addition to retain the characteristics of the conventional neural units, the ACCLN displays a rich range of behavior reminiscent of that observed in neurons. Unlike the conventional neural network, the ACCLN has rich range and flexible dynamics, so that it can be expected to have higher ability of searching for globally optimal or near-optimum results.
    Relation: Neural Processing Letters 13 (1) , pp. 55-69
    Appears in Collections:[資訊工程學系所] 期刊論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML385View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback