Tunghai University Institutional Repository:Item 310901/21899
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 21921/27947 (78%)
造访人次 : 4243210      在线人数 : 720
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://140.128.103.80:8080/handle/310901/21899


    题名: Conditional likelihood estimation and efficiency comparisons in proportional odds model with missing covariates
    作者: Hsieh, S.H.a, Lee, S.M.a , Shen, P.S.b, Liu, M.F.
    贡献者: Department of Statistics, Tunghai University Taichung
    关键词: Conditional likelihood;Missing value;Ordinal categorical data;Proportional odds model
    日期: 2011
    上传时间: 2013-05-15T09:07:25Z (UTC)
    摘要: In this article, a conditional likelihood approach is developed for dealing with ordinal data with missing covariates in proportional odds model. Based on the validation data set, we propose the Breslow and Cain (Biometrika 75:11-20, 1988) type estimators using different estimates of the selection probabilities, which may be treated as nuisance parameters. Under the assumption that the observed covariates and surrogate variables are categorical, we present large sample theory for the proposed estimators and show that they are more efficient than the estimator using the true selection probabilities. Simulation results support the theoretical analysis. We also illustrate the approaches using data from a survey of cable TV satisfaction. ? The Institute of Statistical Mathematics, Tokyo 2009.
    關聯: Annals of the Institute of Statistical Mathematics
    Volume 63, Issue 5, October 2011, Pages 887-921
    显示于类别:[統計學系所] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML356检视/开启


    在THUIR中所有的数据项都受到原著作权保护.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈