Tunghai University Institutional Repository:Item 310901/21993
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 21921/27947 (78%)
造访人次 : 4242493      在线人数 : 756
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://140.128.103.80:8080/handle/310901/21993


    题名: Computationally efficient learning of multivariate t mixture models with missing information
    作者: Lin, T.-I.a , Ho, H.J.a, Shen, P.S.
    贡献者: Department of Statistics, Tunghai University Taichung
    关键词: Classifier;Learning with missing information;Multivariate t mixture models;Outlying observations;PX-EM algorithm
    日期: 2009
    上传时间: 2013-05-15T09:08:49Z (UTC)
    摘要: A finite mixture model using the multivariate t distribution has been well recognized as a robust extension of Gaussian mixtures. This paper presents an efficient PX-EM algorithm for supervised learning of multivariate t mixture models in the presence of missing values. To simplify the development of new theoretic results and facilitate the implementation of the PX-EM algorithm, two auxiliary indicator matrices are incorporated into the model and shown to be effective. The proposed methodology is a flexible mixture analyzer that allows practitioners to handle real-world multivariate data sets with complex missing patterns in a more efficient manner. The performance of computational aspects is investigated through a simulation study and the procedure is also applied to the analysis of real data with varying proportions of synthetic missing values. ? Springer-Verlag 2008.
    關聯: Computational Statistics
    Volume 24, Issue 3, 2009, Pages 375-392
    显示于类别:[統計學系所] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML430检视/开启


    在THUIR中所有的数据项都受到原著作权保护.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈