Tunghai University Institutional Repository:Item 310901/22134
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 21921/27947 (78%)
造訪人次 : 4205397      線上人數 : 709
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://140.128.103.80:8080/handle/310901/22134


    題名: Problems arising from jackknifing the estimate of a Kaplan-Meier integral
    作者: Shen, P.-S.
    貢獻者: Department of Statistics, Tunghai University Taichung
    關鍵詞: Censored data;Jackknife;Kaplan-Meier estimators
    日期: 1998
    上傳時間: 2013-05-15T09:10:51Z (UTC)
    摘要: Stute and Wang (1994) considered the problem of estimating the integral SΦ = ∫ ΦdF, based on a possibly censored sample from a distribution F, where Φ is an F-integrable function. They proposed a Kaplan-Meier integral ?Φn to approximate SΦ and derived an explicit formula for the delete-1 jackknife estimate ?Φn(1). ?Φn(1) differs from ?Φn only when the largest observation, X(n), is not censored (δ(n) = 1) and next-to-the-largest observation, X(n-1), is censored (δ(n-1) = 0). In this note, it will be pointed out that when X(n) is censored (δ(n) =0) ?Φn(1) is based on a defective distribution, and therefore ?Φn(1) can badly underestimate SΦ. We derive an explicit formula for the delete-2 jackknife estimate ?Φn(2). However, on comparing the expressions of ?Φn(1) and ?Φn(2), their difference is negligible. To improve the performance of ?Φn(1) and ?Φn(2), we propose a modified estimator S?Φn according to Efron (1980). Simulation results demonstrate that S?Φn is much less biased than ?Φn(1) and ?Φn(2). ? 1998 Elsevier Science B.V. All rights reserved.
    關聯: Statistics and Probability Letters
    Volume 40, Issue 4, 15 November 1998, Pages 353-361
    顯示於類別:[統計學系所] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML275檢視/開啟


    在THUIR中所有的資料項目都受到原著作權保護.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋