English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4201921      Online Users : 295
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/22549


    Title: Predictive membrane transport model for nanofiltration processes in water treatment
    Authors: Tu, S.-C., Ravindran, V., Den, W., Pirbazari, M.
    Contributors: Department of Environmental Science and Engineering, Tunghai University
    Date: 2001
    Issue Date: 2013-05-21T09:09:52Z (UTC)
    Abstract: A membrane transport model was developed for prediction and simulation of membrane filtration (nanofiltration) dynamics with reference to permeate flux. It incorporates important phenomenological aspects of membrane transport, such as concentration polarization and gel layer formation, and illustrates the concentration of solutes as foulants in the mass-transfer boundary layer on the membrane surface. Membrane filtration tests using tannic acid as a model organic compound were designed for investigating permeate fluxes, as well as solute concentration profiles for permeates and concentrates. Membrane performance experiments were conducted under various operation conditions by varying several parameters including solute concentrations, transmembrane pressures, and reject flow rates. The tests showed that the NF-45 membrane composed of polypiperazine amide was more susceptible to organic fouling by tannic acid than the NF-70 membrane made of cross-linked aromatic polyamide. These observations were supported by surface-potential measurements that demonstrated higher negative surface charges and greater hydrophilicity for the NF-70 membrane in the presence of tannic acid. The predictive capability of the membrane transport model was evaluated using the results from membrane filtration tests. Model sensitivity studies were conducted to obtain information on effects of various input parameters pertaining to operating conditions and fluid-dynamic regimes.
    Relation: AIChE Journal
    Volume 47, Issue 6, June 2001, Pages 1346-1362
    Appears in Collections:[環境科學與工程學系所] 期刊論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML243View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback