As an analogous concept of a nowhere-zero flow for directed graphs, we consider zero-sum flows for undirected graphs in this article. For an undirected graph G, a zero-sum flow is an assignment of non-zero integers to the edges such that the sum of the values of all edges incident with each vertex is zero, and we call it a zero-sum k -flow if the values of edges are less than k. We define the zero-sum flow number of G as the least integer k for which G admitting a zero-sum k-flow. In this paper, among others we calculate the zero-sum flow numbers for regular graphs and also the zero-sum flow numbers for Cartesian products of regular graphs with paths. ? 2012 Springer-Verlag.
Relation:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Volume 7285 LNCS, 2012, Pages 269-278