English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4216765      Online Users : 175
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/24047


    Title: 結合粒子群最佳化與蟻群演算法 於批次揀貨問題
    Other Titles: Using a hybrid algorithm to solve the joint order batching and picker routing
    Authors: 詹立楷
    Chan, Likai
    Contributors: 鄭辰仰
    Cheng, Chenyang
    工業工程與經營資訊學系
    Keywords: 訂單分批;蟻群演算法;粒子群最佳化演算法;混合流程式;揀貨;揀貨路徑
    Ant Colony Optimization;Particle Swarm Optimization;Hybrid Algorithm;Order Picking;Order Batching;Picker Routing
    Date: 2013
    Issue Date: 2014-02-19T06:54:02Z (UTC)
    Abstract: 物流中心中,揀貨由於重複性以及勞動密集性耗費大量人力因此備受重視。但目前研究大部分皆只有解決訂單分批(Batching)或是最佳路徑規劃(Routing methods)。學者提出一二階段之啟發式演算法,以解決兩種問題(joint order batching and sequencing problem)結合之排程架構,並透過小樣本之實驗進行比較,雖然計算較為複雜,但確實可得到相當大之改善。本研究考量物流中心揀貨作業的相關特性,利用整合粒子群最佳化演算法和蟻群演算法規劃訂單分批與揀貨順序的配置,使規劃後之揀貨距離(total travel distance)最小化。首先,本研究將探討過去在揀貨最佳化的研究,以作為此演算法的依據,進而提出揀貨時間最小化的整合式演算法,透過詳細說明演算法之流程與邏輯。最後,本研究所提出之演算法將與線性規劃求解的方式進行比較與效益分析。
    Order picking is the most costly operation in the warehouse because it is labor-intensive and repetitive. However, most common order picking research focus on order batching or picker routing and both sub-problem are NP-hard. Therefore, this research purposes a hybrid algorithm for solving the joint batch picking and picker routing problem considering batch size, order allocation in a batch, and traveling distance. The core of the hybrid algorithm consists of the particle swarm optimization (PSO) algorithm and ant colony optimization (ACO) algorithms. The PSO algorithm finds the best batch picking plan by minimizing the sum of the traveling distance. The ACO searches for the most effective traveling path for each batch. The result shows that the hybrid algorithm is the more efficient methods than the optimal solution and the current industry practice in terms of solution quality and computational efficiency.
    Appears in Collections:[工業工程與經營資訊學系所] 碩博士論文

    Files in This Item:

    File SizeFormat
    100THU00030017-001.pdf3484KbAdobe PDF296View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback