English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4202244      Online Users : 604
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/2431


    Title: 以超圖解模型的文章分類程序
    Other Titles: Document Clustering Processing Based on HyperGraph Model
    Authors: 陳仁傑
    Chen, Jen-Chieh
    Contributors: 許玟斌
    Xu, Wen-Bin
    東海大學資訊工程學系碩士在職專班
    Keywords: 相對資訊;關聯規則;圖形切割;多重主體屬性
    Mutual Information;Association Rule;Graph Partition;Multi-Objectives
    Date: 2008
    Issue Date: 2011-03-14T06:47:17Z (UTC)
    Abstract: 隨著電子化的趨勢,各式各樣的電子資料一直在網路上迅速的繁衍與增長。雖然已有相當多研究投入文件資料搜尋,但目前似乎面臨成果不佳以及發展膠著的窘境。因此本研究致力於發展正確性、實用性及方便性的演算步驟以提昇檢索成效。 在眾多的相關研究議題中,群聚經常被利用於大型資料的歸類,但在搜尋引擎的檢索中群聚研究並未多見,故本論文將以此方向做為研究重心。我們利用關聯規則(Association Rule)挖掘共通屬性之間的關係,再藉由圖解模型(Graph Model)的架構來闡述屬性之間的關聯及強弱程度,最後透過切割圖形達到分群的效果。本作法所呈現的族群屬性與量測結果,不同於一般以核心距離偵測或向量比對的做法。我們獲得的群聚反應具有精確、易於理解及快速執行等優勢。
    With the electrifying of the Internet, all types of electronic information have been rapidly growing and increasing. Although massive amount of research has been dedicated to information searching, it seems that we are faced with the awkward situation of barely permissible results and deadlocked progress, and we are hoping to advance search utilities with higher accuracy, better practicality, and greater convenience. In multitudinous research topics, clustering is often used to classify large-scale information, and has had exceptional results, but clustering is rarely used in search engines; therefore, this paper will discuss utilizing cluster in search technology. We apply the Association Rule to pull closer the relation between common attributes, and then use a Graph Model structure to elaborate on the association and strength of each attribute, and lastly we adopt graph segmentation to achieve classification. The category attributes and test results displayed by this approach are different from those achieved via normal distance detection, and the obtained results have advantages such as higher precision, easier understandability, and faster execution.
    Appears in Collections:[資訊工程學系所] 碩士論文

    Files in This Item:

    File SizeFormat
    096THU00392004-001.pdf239KbAdobe PDF269View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback