English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4216881      Online Users : 284
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/24571


    Title: linex 損失函數下貝氏序列估計之二階次近似問題研究
    Other Titles: Second Order Approximations for Bayes Sequential Estimation under Linex Loss Function
    Authors: 黃連成
    Contributors: 東海大學統計學系
    行政院國家科學委員會
    Keywords: 漸近最優性;漸近最佳性;漸近點最優;共軛事先分佈; LINEX 損失;序?估計;
    asymptotically non-deficient;asymptotically optimal; asymptotically pointwise optimal;conjugate prior;LINEX loss; sequential estimation;
    Date: 2012
    Issue Date: 2014-03-07T07:36:38Z (UTC)
    Abstract: 在 貝 氏 的 架 構 下 , 考 慮 研 究 使 用 非 對 稱 的 LINEX (linearexponential) 估計損失和抽樣成本的序?估計問題,Hwang and Lee (2011 b)提出給定事先分佈的漸近點最優(asymptotically pointwise optimal)法則具有漸近最佳(asymptotically optimal)性質,亦即具有最佳的一階次近似。本研究計劃針對常用的共軛事先(conjugate prior)分佈,分別討?特殊指?族分佈和一維指?族分佈的漸近點最優法則,將推導它們的貝氏風險至二階次近似,在某些條件下,將可得到漸近點最優法則具有如同Woodroofe (1981)的漸近最優(asymptotically non-deficient)性質。
    Within the framework of Bayesian model, the problem of sequential estimation is considered under LINEX (linear-exponential) loss plus cost of sampling. In one-parameter exponential family, an asymptotically pointwise optimal procedure with a prior distribution is proposed and shown to be asymptotically optimal by Hwang and Lee (2011 b). In the project, natural conjugate prior distributions are assumed. The second order approximations to the Bayes risks of asymptotically pointwise optimal procedures will be obtained for the particular exponential family and the one-parameter exponential family, respectively. Then the asymptotically pointwise optimal procedures are shown to be asymptotically non-deficient in the sense of Woodroofe (1981), under some regularity conditions.
    Relation: 計畫編號:NSC101-2118-M029-003
    研究期間:2012-08~ 2013-07
    Appears in Collections:[統計學系所] 國科會研究報告

    Files in This Item:

    File SizeFormat
    index.html0KbHTML382View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback