English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4202270      Online Users : 630
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/24624


    Title: 擴散時疫模型的行波解之研究
    Other Titles: Traveling Wavefronts for a Diffusive Epidemic Model
    Authors: 楊智烜
    Contributors: 東海大學數學系
    行政院國家科學委員會
    Keywords: 行波解;擴散時疫擴系統;
    traveling wave;epidemic model;uniqueness;
    Date: 2012
    Issue Date: 2014-03-07T08:05:58Z (UTC)
    Abstract: 本計畫研究擴散時疫系統的行波解。考慮下列反應擴散系統 ut = d1uxx ? u + h(v); (1a) vt = d2vxx ? v + g(u); (1b) 其中t 0, x 2 R, di 0 for i = 1; 2. 此處u(x; t) 代表病菌的密度; v(x; t) 代表被感染人的密度; ? u 是病菌的自然死亡率; h(v) 代表被感染人對病菌密度成長的貢獻度; ? v 是被感染人密度的自然衰減率; g(u) 是人的被感染率; d1 與d2 分別是病菌與人的擴散係數。本計畫研究該系統的行波解的存在、單調、與唯一性。
    This project concerns with the traveling wave solutions for the following reaction di?usion system arises from the spread of the epidemic with oral-fecal transmission, ut = d1uxx ? ?u + h(v); (1a) vt = d2vxx ? ?v + g(u); (1b) where t ? 0, x 2 R and di ? 0 for i = 1; 2. Here u(x; t) and v(x; t) stand for the spatial concentration of the bacteria and the spatial concentration of infective human population respectively in an urban community at time t and the point x in the one-dimensional habit region; ??u is the natural death rate of the bacterial population and h(v) is the contribution of the infective humans to the growth rate of the bacterial; ??v is the natural diminishing rate of the infective population due to the ?nite mean duration of the infectious population. The nonlinearity g(u) is the infection rate of the human population under the assumption that the total susceptible human population is constant during the evolution of the epidemic; d1 and d2 are di?usion coe?cients. We will investigate the existence, asymptotic behavior, monotonicity and uniqueness of traveling wave solutions.
    Relation: 計畫編號:NSC101-2115-M029-004
    研究期間:2012-08~ 2013-07
    Appears in Collections:[應用數學系所] 國科會研究報告

    Files in This Item:

    File SizeFormat
    index.html0KbHTML380View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback