Tunghai University Institutional Repository:Item 310901/24912
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 21921/27947 (78%)
造访人次 : 4230970      在线人数 : 317
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://140.128.103.80:8080/handle/310901/24912


    题名: Ultra-fast epileptic seizure detection using EMD based on multichannel electroencephalogram
    作者: Chen, W.;Lam, Y.-Y.;Shen, C.-P.;Sung, H.-Y.;Lin, J.-W.;Chiu, M.-J.;Lai, F.
    贡献者: Department of Information Management, Tunghai University
    日期: 2013-11-10
    上传时间: 2014-06-18T06:53:57Z (UTC)
    出版者: Chania
    摘要: We present a system to detect seizure and spike in Epilepsy Electroencephalogram (EEG) analysis and characterize different epilepsy EEG types. After extracting features from three EEG types, Normal, Seizure and Spike, with Empirical Mode Decomposition (EMD), we do Analysis of variance (ANOVA) to classify conspicuous features and low-resolution features, and build Gaussian distributions of conspicuous features for probability density function (PDF) to do classification. Using EMD, the recognition rate improved from 70% to 90%. With ANOVA, the recognition rate can reach 99%. The linear model accelerates the system from 2 hours to 90 seconds compare to the previous approach. ? 2013 IEEE.
    關聯: 13th IEEE International Conference on BioInformatics and BioEngineering, IEEE BIBE 2013
    13th IEEE International Conference on BioInformatics and BioEngineering, IEEE BIBE 2013
    显示于类别:[資訊管理學系所] 會議論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML418检视/开启


    在THUIR中所有的数据项都受到原著作权保护.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈