English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4238029      Online Users : 435
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/25492


    Title: 在系統呼叫層級上使用資料探勘、個人化特徵與叢集運算之即時內部入侵偵測與保護系統
    Other Titles: An Internal Real-Time Intrusion Detection and Protection System at System Call Level by using Data Mining and Profiling Techniques under the Assistance of a Grid
    Authors: 蕭義庭
    Hsiao Yi-Ting
    Contributors: 呂芳懌
    Leu Fang-Yie
    資訊工程學系
    Keywords: 惡意行為;使用者辨識;資料探勘;入侵偵測和保護;數位鑑識;叢集運算
    Identifying Users,;Data Mining;Intrusion Detection and Protection;Computer Forensic Features;Identifying Malicious behaviors;Computational Grid
    Date: 2014
    Issue Date: 2015-04-15T02:54:42Z (UTC)
    Abstract: 目前電腦系統普遍以使用者代號與密碼來確認使用者身份。然而使用者常會將這兩項資訊告知內部同事或被駭客破解,造成了系統安全的弱點以及最難防範的內部攻擊。在這篇論文中我們提出即時內部入侵偵測與保護系統(Internal Real-Time Intrusion Detection and Protection System (IIDPS)),它從作業系統呼叫層級(System Call Level) 透過資料探勘技術建立使用者之個人化特徵(User Profile)和惡意程式之攻擊特徵(Attack Profile),並持續追蹤使用者及分析惡意程式之數位行為紀錄,及擴充這些特徵。IIDPS使用叢集運算即時比對線上使用者之數位行為與系統所建立之使用者個人化特徵及攻擊特徵,分析線上使用者是否為本人或執行惡意程式,當偵測到入侵或是攻擊行為時,系統會將線上使用者自系統中隔離,發出警訊並記錄數位鑑識稽核證據。針對既有特徵的實驗結果顯示,IIDPS之使用者辨識率為94%,惡意程式辨識率高達97%,反應時間少於0.45秒,可快速有效偵測阻止系統內部攻擊。
    Currently, most computer systems use user IDs and passwords as the login patterns to authenticate their users. However, many users often share the ID and password with their coworkers or crack by hacker, thereby making the two patterns as one of the weakest points of computer security. Also, internal hackers, the legal users of a system who attack the system internally, are hard to detect since most intrusion detection systems and firewalls often only identify and isolate malicious behaviors launched from outside world of the system. Therefore, in this paper, we propose a security system, named the Internal Real-Time Intrusion Detection and Protection System (IIDPS for short) which detects attacks at system call level. The IIDPS employs data mining techniques to mine users' and attackers' usage behaviors as their computer forensic features, and then establish users' personal profiles and an attacker profile to keep track of these features. The IIDPS uses a local computational grid to determine whether or not a legally login user is the account holder or an attacker by comparing his/her current computer usage behaviors with the computer forensic features collected in the account holder's personal profiles and attacker profile in a real-time manner. Once an internal hacker is discovered, the IIDPS isolates the user, alerts system manager, records digital forensic audit evidence and analyzes his/her malicious behaviors to improve its future detection capability. Our experimental results show that the IIDPS's user identification accuracy is 94%, the accuracy on detecting internal malicious attempts is up to 97% and the response time is less than 0.45 sec, implying that it can prevent a protected system from internal attacks effectively and efficiently.
    Appears in Collections:[資訊工程學系所] 碩士論文

    Files in This Item:

    File SizeFormat
    102THU00394022-001.pdf1042KbAdobe PDF307View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback