English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4201160      Online Users : 877
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/27009


    Title: 自組織映射網路及核算理論於隱函曲面重建
    Implicit Surface Reconstruction Based on SOM Network and Kernel Method
    Authors: 王中行
    張庭瑞
    賴泰華
    Wang, Chung-Shing
    Chang, Teng-Ruey
    Lai, Tai-Hua
    Contributors: 東海大學工業設計學系
    Keywords: 逆向工程
    曲面重建
    隱函曲面
    類神經網路
    核算法
    Reverse engineering
    Surface reconstruction
    Implicit surface
    Neural network
    Kernel methods
    Date: 2011-04
    Issue Date: 2016-06-30T02:40:42Z (UTC)
    Publisher: 桃園縣中壢市 : 中原大學
    Abstract: 諸多有關隱函曲面 (Implicit Surface) 的文獻指出,透過徑向基函數 (Radial Basis
    Function, RBF) 核算 (Kernel Method) 來建立隱函曲面雖有許多好處,卻也存在某些限
    制:龐大的樣本數除了需要大量的系統資源來存取矩陣資料外,大量的 RBF 中心將造
    成系統計算上嚴重之負擔,使得以該方法為基礎的隱函曲面建構論毫無用處。故本研究
    運用自組織映射 (Self-Organizing Map, SOM) 網路結合核算理論,由快速重建為方向,
    從事深入的理論探討及模擬,研擬的課題包括「SOM 特徵擷取」及「RBF 建面」等子
    題。由研究結果可知,透過 SOM 網路,我們可得到足以描述原模型幾何的特徵資料,
    而核化的算則,則使得隱函曲面的計算更加簡單且有效率,也確實達到文中所預期的破
    面修補效果。
    The benefits of modeling implicit surface with RBF Kernel have been recognized by
    numerous bibliographies. Nonetheless, this work was restricted to small problems by the
    storage and arithmetic operations of direct method. When processing the RBF kernel estimate,
    to considerate whole Euclidean distance between RBF centers and instances is required. A
    large number of instances require enormous system resources to access the matrix data, and
    considerable RBF centers may cause heavy computational burden. Therefore, fitting RBF
    Kernel to 3D scattered data has not been regarded as computationally feasible for large data
    sets. For this purpose, we crystallize our research goal that aimed at an in-depth investigation
    of several related domestic and international research in the scope of implicit surface, with
    SOM network and kernel method, both in theory and experiment. Depend on research results;
    we can obtain geometric features which describe the original model sufficiently by using the
    SOM network. Otherwise, kernel methods make calculating of the implicit surface more
    simply and efficiently, and perform the hole-filling processing indeed what we expected.
    Relation: 先進工程學刊,6(2),87-95
    Journal of Advanced Engineering, 6(2), 87-95
    Appears in Collections:[Department of Industrial Design ] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML167View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback