English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4247175      Online Users : 467
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/28496


    Title: 以物鏡式暗視野之散射光學結合毛細管電泳分離金奈米粒子
    Other Titles: Separation of gold nanoparticles by capillary electrophoresis with objective – type dark field scattering
    Authors: 林也唐
    LING,YEH-TANG
    Contributors: 張柏齡
    CHANG,PO-LING
    化學系
    Keywords: 金奈米粒子;雷利散射;毛細管電泳
    gold nanoparticle;rayleigh scattering;capillary electrophoresis
    Date: 2016
    Issue Date: 2016-10-20T07:51:50Z (UTC)
    Abstract: 近年來由於奈米科技蓬勃發展,奈米粒子對於環境及生物的影響也更受人矚目,因此我們有必要開發一些方法來偵測環境中的奈米粒子,其中金奈米粒子的應用也是較為廣泛的一種。本實驗則是利用金奈米粒子本身具有雷利散射(rayleigh scattering)訊號作為偵測,並以物鏡式暗視野之裝置結合毛細管電泳,來偵測金奈米粒子。學生所使用之毛細管為方形毛細管,並非傳統圓形毛細管,藉由方形毛細管的特性能夠有效降低不必要的背景散射光。分離條件上,學生選擇在毛細管內通入50 mM Glycine,為了增加其解析度,學生在近樣前端添加十二烷基硫酸鈉(sodium dodecyl sulfate, SDS),經過優化後之裝置及實驗條件下,能成功偵測到金奈米粒子之散射光,為了達到更好的偵測極限,學生運用了樣品堆積,使此系統能夠偵測到10 pM的金奈米粒子訊號。學生更近一步在無電滲流之條件下,分離電壓- 5 Kv,並藉由1% PVP做為篩分介質,且將修飾於金奈米表面之MPA替換為MUA,在此條件下,學生能夠成功的將13 nm 及32 nm之金奈米粒子從毛細管電泳中分離開來,並利用標準添加法來確定其訊號位置,亦能夠成功確認兩種不同大小之金奈米粒子。因此,學生所開發出此套系統,不僅有好的偵測極限,並且還能夠成功的將13 nm 及32 nm 之金奈米粒子分離開來。
    In recent years, due to the vigorous development of nanotechnology, the impact of nanoparticles on the environment and the biology attracted much more attention. Therefore, we need to develop some methods to detect nanoparticles in the environment, which the application of gold nanoparticles is more widely used. In this study, we take advantage of gold particles which themselves have a Rayleigh scattering characteristic as a detection signal, and also collect the signal of gold nanoparticles by capillary electrophoresis with objective-type dark field scattering. We choose the square capillary instead of circular capillary. With the square capillary’s unique characteristics can effectively reduce unwanted background scattering. The separation condition of gold nanoparticles is 50 mM Glycine and in order to improve the separation efficiency, we add sodium dodecyl sulfate in the capillary. Under experimental conditions and apparatus through optimized, it can successfully detect the gold nanoparticle’s scattering. In order to have better detection limit, we use the on line sample stacking. The limits of detection of gold nanoparticles were 10 pM. We investigate in non- electroosmotic flow condition and separation voltage is -5 kV. We also modify the gold nanoparticles by MUA. Under this condition, we can separate 13 nm and 32 nm successfully by capillary electrophoresis. We even use the standard addition method to determine exactly peak location. Therefore, we develop this set of system not only have good detect limits but also can separate the different size of gold nanoparticles.
    Appears in Collections:[化學系所] 碩博士論文

    Files in This Item:

    File SizeFormat
    104THU00065007-001.pdf4543KbAdobe PDF1033View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback