US:American Society for Biochemistry and Molecular Biology
Abstract:
Caveolae are vesicular invaginations of the plasma membranes that regulate signal transduction and transcytosis, as well as cellular cholesterol homeostasis. Our previous studies indicated that the removal of cholesterol from aortic endothelial cells and smooth muscle cells in the presence of HDL is associated with plasmalemmal invaginations and plasmalemmal vesicles. The goal of the present study was to investigate the location and distribution of caveolin-1, the main structural protein component of caveolae, in cholesterol-loaded aortic endothelial cells after HDL incubation. Confocal microscopic analysis demonstrated that the caveolin-1 appeared to colocalize with HDL-fluorescein 1,1′-dioctadecyl 3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI) conjugates on the cell surface. No free HDL-DiI conjugates were revealed in the cytoplasm. Immunoelectron microscopy further demonstrated that caveolin-1 gold (15 nm) conjugates colocalized with HDL gold (10 nm) conjugates in the plasmalemmal invaginations.
These morphological results indicated that caveolae are the major membrane domains facilitating the transport of excess cholesterol to HDL on the cell surface of aortic endothelial cells.