English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4242720      Online Users : 819
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/31100


    Title: 乳房磁振造影之三維乳腺區域切割
    Other Titles: Three-Dimensional Segmentation for Fibroglandular Tissues on Breast MRI
    Authors: 吳冠澤
    Wu, Guan-Ze
    Contributors: 黃育仁
    Huang, Yu-Len
    資訊工程學系
    Keywords: 乳癌;磁振造影;乳腺體積;乳腺密度;影像切割;三維區域成長法
    breast cancer;magnetic resonance imaging;breast volume;breast density;image segmentation;three-dimensional region growing
    Date: 2018
    Issue Date: 2019-01-10T09:04:30Z (UTC)
    Abstract: 乳癌是現今婦女最常罹患的癌症,隨著醫學研究的發展與進步,若早期發現並接受治療能夠提高乳癌的治癒率。在醫學影像常用來診斷乳房腫瘤的工具有乳房X光攝影、超音波影像與核磁共振影像,對於電腦輔助分析系統而言,準確的乳腺體積和乳腺密度已被證明可以幫助醫生有效地預測罹癌的風險,在乳房磁振造影(MRI)上進行乳腺輪廓描繪,是一個相當重要的步驟。隨著乳房磁振造影愈來愈廣泛被使用,自動切割乳腺組織變得重要,在臨床上應用很迫切。因此,本研究提出一個乳腺輪廓自動描繪演算法,來輔助醫生判讀乳房磁振造影的乳腺組織資訊。本研究先採用各項擴散異性濾波法進行乳房磁振造影的前處理,以降低影像的雜訊,再調整影像對比度,使得乳腺區域和乳房區域分離並讓邊緣更加明顯,影像切割的主要技術採用三維區域成長法取得乳腺組織,最後再使用型態學的方法將切割的結果進行後處理修補乳腺區域,使得切出來的乳腺組織可以更為精確。本研究總共使用10個病例進行實驗,最後實驗切割出的結果會與醫師手動描繪的乳腺區域進行比較,並計算四個指數(SI、OF、OV、EF)評估相似性。
    Breast cancer is the most common cancer in woman. The development and progress of medical research, if early detection and treatment can improve the cure rate of breast cancer. There are many ways to diagnose breast tumors in medical imaging tools, such as mammography, ultrasonography and magnetic resonance imaging (MRI). In computer aided analysis of MRI, contouring of breast fibroglandular region is an important step. Accurate volume of fibroglandular tissue and breast density should help physicians to effective predict the risk of cancer. As breast MRI becomes more widespread used, a functional automatic method for extracting fibroglandular breast tissue is essential and its clinical application is becoming urgent. This study proposes a robust segmentation method to assist the physician on contouring breast fibroglandular region. The proposed method first utilizes the anisotropic diffusion filtering to reduce the noises and speckle in MRI images. Three-dimensional (3D) region growing method is applied to segment the breast fibroglandular area. Finally, the proposed method obtains the area smoother and correctly though a post processing step. All segmentation methods are three-dimensional, compared to two-dimensional segmentation can be considered more relevance, the results more accurate. This study evaluated total of 10 breast cases and four practical similarity measures (similarity index, overlap fraction, overlap value, and extraction fraction) are used to evaluate the result between the manually determined contours, and the proposed segmentation method.
    Appears in Collections:[資訊工程學系所] 碩士論文

    Files in This Item:

    File Description SizeFormat
    106THU00394010-001.pdf1801KbAdobe PDF119View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback