English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4198551      Online Users : 263
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/31154


    Title: 具急性與慢性階段和雙線性傳染率的SEI傳染病系統之穩定性分析
    Other Titles: The Stability of an SEI Epidemic System with Acute and Chronic Stages and Bilinear Incidence Rate
    Authors: 蔡育婷
    TSAI, YU-TING
    Contributors: 何肇寶
    HO, CHAO-PAO
    應用數學系
    Keywords: 無病均衡點;疾病均衡點;基本再生數;雙線性傳染率;局部穩定性;整體穩定性;Hurwitz準則;Lyapunov函數
    Free-disease equilibrium point;Endemic equilibrium point;Basic reproduction number;Bilinear incidence rate;Local stability;Global stability;Hurwitz criterion;Lyapunov function
    Date: 2018
    Issue Date: 2019-01-10T09:13:25Z (UTC)
    Abstract: 本篇論文主要探討具有急性與慢性階段和雙線性傳染率的非線性微分方程系統,將感染者分為急性感染者及慢性感染者,建立了SEI傳染病模型的分支:SEIV模型。透過微分方程相關理論證明了無病均衡點及疾病均衡點的局部與整體穩定性,並且在數學上以及公衛領域上,皆獲得影響傳染疾病是否滅絕或持續蔓延的關鍵條件:基本再生數。
    In this thesis, we mainly analyze the stability of an SEI epidemic system with acute and chronic stages and bilinear incidence rate. We use the technique of Hurwitz criterion and Lyapunov function to analyze the stability of free-disease equilibrium point P_{0} and endemic equilibrium point P^{*}. Furthermore, both in Mathematics and Public Health, we obtain the basic reproduction number R_{0} which determines whether the disease extinguishes or spreads.
    Appears in Collections:[應用數學系所] 碩博士論文

    Files in This Item:

    File SizeFormat
    106THU00507002-001.pdf1223KbAdobe PDF342View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback