English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 21921/27947 (78%)
造訪人次 : 4237857      線上人數 : 385
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://140.128.103.80:8080/handle/310901/3142


    題名: 利用粒子群演算法在電腦遊戲訓練團隊策略
    其他題名: Applying PSO algorithm to train the strategy of a team in computer games
    作者: 黃奐禎
    Huang, Huan-Chen
    貢獻者: 蔡清欉
    Tsai, Ching-Tsorng
    東海大學資訊工程學系碩士在職專班
    關鍵詞: 遊戲人工智慧;粒子群最佳化;團隊學習
    Artificial Intelligence;Particle Swarm Optimization;Teamwork
    日期: 2007
    上傳時間: 2011-03-30T06:29:21Z (UTC)
    摘要: 由於政府大力推動休閒產業,而電腦遊戲具有高度的互動性以及整合各式媒體的能力,電腦遊戲擬真的影像與具備臨場感的聲音效果,能帶給玩家身歷其境的遊戲體驗,使得電腦遊戲已經成為現代人們重要的一項休閒娛樂活動,也因此帶動遊戲產業更加蓬勃發展。近幾年遊戲的發展,由於電腦繪圖技術的突飛猛進,因此遊戲的開發團隊大多把重心投入電腦繪圖的領域,而忽略了遊戲的本質,這個問題漸漸地受到遊戲公司的重視,所以許多的遊戲公司已將注意力放在提升遊戲的人工智慧上,期望具有思考且多變的人工智慧,可以製作出更具遊戲性的電腦遊戲。針對電腦遊戲人工智慧的應用,較適合運算速度較快且較為穩定的演算法,粒子群最佳化演算法(Particle Swarm Optimization)在人工智慧領域中擁有相當不錯評價,其特點為運算與收斂速度較快且穩定,是一項新興的最佳化機器學習技術。在本文中我們提出一種團隊策略的學習方法,可以很容易訓練出具有效率的團隊,訓練過程中不需要大量的訓練資料以及費時的運算,更適合遊戲環境的應用,並且可以輔助遊戲的人工智慧設計師調整行為參數,節省測試不同參數組合的時間,增加遊戲開發的效率。最後,我們將所提出的演算法實際套入雷神之鎚3遊戲中之單旗搶旗模式中,結果顯示我們所創造出來的團隊,與原始的人工智慧相比較,在遊戲中表現的確較為出色。
    Computer games have highly interactive ability and can integrate various media. Computer games provide truly images and surround sound effects that give the player a wonderful experience. Now playing computer games becomes one of most popular entertainment. Therefore, it let the game industry develop more quickly.Because the technology of computer graphics improve very quickly recently year, many computer games develop teams put a lot of effort in this area. It makes them ignore the core of game. So many computer companies find this problem and change their target. They become to pay their attention to the game’s AI. They hope the smart and various AI can make the computer game more interesting.For the application of computer game AI, the computation must be quick and stable. Particle Swarm Optimization (PSO) has pretty good evaluation in Artificial Intelligence. This method has three features: calculation fast, convergence fast, and stable. It is a new optimization and machine learning technology. In this paper we propose a strategy of learning, and it is more easily to train the efficiency of the team. Training process does not need a lot of training materials and time-consuming operation; it is more suitable for the environment of the game. Supplementary game designers can adjust the artificial intelligence and behavior parameters, different parameters of the test to save time, increase the efficiency of development of the game.Finally, we put our algorithms into the actual game Quake III-One flag CTF mode. Results indicate that the team we created compared with the original artificial intelligence, indeed more outstanding performance in the game.
    顯示於類別:[資訊工程學系所] 碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML340檢視/開啟


    在THUIR中所有的資料項目都受到原著作權保護.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋