巢鼠(Micromys minutus)於歐亞大陸上有著廣大的地理分布,在台灣,巢鼠的亦有極大範圍的垂直分布。儘管這個物種對於自然環境具有極佳的適應性,但由於牠對棲地的特殊需求,使得牠的族群分布受到地理景觀變化的影響極大。我們的研究主要是分析巢鼠的遺傳構造,並把它和其他地區的巢鼠相關資料做比較。研究結果確立了關於染色體總數、染色體總臂數、以及個別染色體的形狀,包括繪出了第一份巢鼠染色體核型圖。為了進一步研究巢鼠的染色體演化以及提供與其它地區巢鼠族群進行比較,本研究將巢鼠的18S核醣體核糖核酸複製出來,做成探針並標記在分裂中期的染色體上。我們還利用18S核醣體核糖核酸的序列,以及X染色體的塗染技術兩者試圖探討巢鼠和小鼠(M. musculus)及大鼠(R. norvegicus)的親緣關係,結果發現18S核醣體核糖核酸和X染色體物在三個物種之間高度保守近似。探討巢鼠適應不同海拔環境的生理機制,我們利用大鼠晶片比較高海拔地區在地採集以及移至低海拔地區圈養環境之後的巢鼠骨骼肌的基因轉錄表現。在總共可分析的23188個基因中,共有47個基因有明顯不同的表現量(> 4或< -4倍,變異數分析 p <0.05)。但是在經過多重測試校正之後,只剩下基因Tnfrsf12a在低海拔環境有較高之表現量。此一結果經過定量聚合酶連鎖反應(q-PCR)確認。僅發現一個基因在兩個環境有顯著不同的表現量,或許顯示基因轉錄反應在巢鼠從高海拔移至低海拔環境的適應過程中並未扮演主要的角色。巢鼠的行為模式可能在海拔高度的適應上也十分的重要。 The harvest mouse (Micromys minutus) has a wide range of geographic distribuation in the Euroasian continent and broad rage of vertical distribution in Taiwan. As the need of its special habitat requirement, the population distribution of the harvest mouse is affected by the landscape although its superior capacity to cope with natural perturbations. We studies the genetic component of the Formosan harvest mouse and compared with those of harvest mouse from other geographic locations. Our study confirmed the previously reported 2N number, fundamental number (FN), the shape and banding patterns of the chromosomes, including proposing the first ideogram of the harvest mouse. For further studies of its chromosomal evolution or comparision with other populations, the 18S rRNA gene of the harvest mouse was cloned and mapped to the metaphase chromosomes. By comparing the 18S rDNA sequences and X chromosome painting FISH, we also demonstrated that both are highly conserved across Micromys minutus, M. musculus, and R. norvegicus.To study the physiological mechanism involved in altitude acclimation, rat cDNA microarray was used to compare transcriptomic patterns of the skeletal muscle tissues taken from individuals native to the high-altitude environment and those transferred to the low-altitude captive site. Among 23,188 genes analyzed, only 47 were found to have differential expression (fold change > 4 or < −4, ANOVA p < 0.05). And after multiple testing correction with a false discovery rate (FDR), only the gene Tnfrsf12a was found more expressed in the low–altitude environment. The result was confirmed by quantitative polymerase chain reaction (q-PCR). Finding only one gene transcript with significant alteration suggests that transcriptomic response may not play a major role in high to low-altitude acclimation in harvest mouse. The behavior of the harvest mouse may also important for the altitude acclimation.