English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4198009      Online Users : 755
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/31787


    Title: 曲線數據之群集分析
    Other Titles: Clustering Analysis for Curve Data
    Authors: 黃家俊
    Wong Ka Chub
    Contributors: 呂恒輝
    Lue Heng-Hui
    統計學系
    Keywords: 群集分析
    Curve Clustering;Curve Correlation;Dimension Reduction;Curve Data Analysis
    Date: 2019
    Issue Date: 2019-12-16T06:28:48Z (UTC)
    Abstract: This article concerns about clustering analysis for curve data with high- dimensional covariates. We propose an adaptive correlation-based approach for achieving clustering. The key idea is to use the shape similarity of structure components to distinguish different clusters from viewpoint of a space basis. Curves with similar shape will be embedding into the same cluster. Our algorithm takes advantage of PDE proposed by Lue (2019) to estimate the loading and basis functions for dimension reduction purpose. Simulation studies illustrate the usefulness of the proposed method.
    Appears in Collections:[統計學系所] 碩博士論文

    Files in This Item:

    File Description SizeFormat
    107THU00337012-001.pdf631KbAdobe PDF274View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback