English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4197939      Online Users : 694
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/31878


    Title: 離散對數問題的探討
    Other Titles: On the Discrete Logarithm Problems
    Authors: 洪郁程
    HUNG,YU-CHENG
    Contributors: 沈淵源
    SHEN,YUAN-YUAN
    應用數學系
    Keywords: 密碼學;離散對數問題
    cryptography;discrete logarithm problem
    Date: 2019
    Issue Date: 2019-12-16T07:04:57Z (UTC)
    Abstract: 此篇論文主要在講述離散對數問題 (discrete logarithm problem)的解。在密碼學中,離散對數問題是一個擁有廣泛應用的研究主題,有許多系統,安全性便是建立在解離散對數問題的難題上。文中首先介紹離散對數問題與密碼學中關係,進一步說明嬰步巨步演算法、波立格-赫爾曼演算法以及指數計算法等三種解離散對數問題的方法,最後呈現使用 MATLAB 語言實現這些算法程式的計算結果並比較計算時間的多寡。
    In this thesis, we are concerned to calculate discrete logarithm problem. In cryptography, the discrete logarithm problem is a research topic with a wide range of applications. There are many systems that security is built on the difficulty of solving discrete logarithm problems.First, we introduce the relationship between discrete logarithm problem and cryptography. And explain three methods for solving discrete logarithm problems. Baby-Step Giant-step methods, Pohlig-Hellman Algorithm and Index calculus methods. Finally, the calculation results and the calculation time of these algorithm are implemented using the MATLAB to compared.
    Appears in Collections:[應用數學系所] 碩博士論文

    Files in This Item:

    File SizeFormat
    107THU00507004-001.pdf2793KbAdobe PDF128View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback