English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4197956      Online Users : 709
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/31882


    Title: 藉由機器學習探究失智症分群的非平衡數據問題
    Other Titles: Classification of Imbalanced Dementia Historical Data via Machine Learning Technique
    Authors: 杜歆楷
    DU, SIN-KAI
    Contributors: 黃皇男
    HUANG, HUANG-NAN
    應用數學系
    Keywords: 臨床失智症量表;機器學習;非平衡數據
    CDR;Maching Learning;Imbalanced Data
    Date: 2019
    Issue Date: 2019-12-16T07:05:45Z (UTC)
    Abstract: 本論文的目的是透過不同機器學習的方式,包含單純貝氏分類法、多層感知器、以決策樹為分類器的引導聚集算法、支持向量機等演算法,來建立臨床失智症量表數據和醫師診斷的篩選的模型。臨床量表數據依據失智症的嚴重程度分成六類、五類和三類等三種,研究結果顯示以決策樹為分類器的引導聚集算法為最佳。由於三類數據分布明顯為非平衡,因此透過SMOTE方法對,對少量數據進行調整,分析結果顯示對準確度與精確率的提升相當有限。最後利用主成分分析的技術,進行臨床量表題目的幾種化簡,並經由信度分析,選擇臨床量表的重要題目,研究結果顯示語言有關題目扮演重要角色。
    The purpose of thesis is to establish CDR score data and screening models for physician diagnosis through different machine learning methods, including classifiers such as Naïve Bayes, Multilayer perceptron, Bootstrap aggregating with decision tree, and support vector machine. The CDR score data are divided into six, five and three stages according to the severity of dementia. Bootstrap aggregating with decision tree classifier is the best among the others. Also, the population sizes for three stages case are obviously imbalanced, SMOTE method is used to adjust a small amount for the normal statege and the study result shows the improvement is rather limited. Finally, principal component analysis (PCA) is carried to to simplify CDR questionares, and certain questions are selected and verified through the reliability analysis. Our study shows that newly added language-assesment questionnaire plays an important role in our analysis.
    Appears in Collections:[應用數學系所] 碩博士論文

    Files in This Item:

    File SizeFormat
    107THU00507008-001.pdf3411KbAdobe PDF53View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback