在本實驗中,我們嘗試在矽(100)基板上利用低壓化學氣象沉積法來成長奈米碳管和氮化鎵(GaN)的異質結構奈米線,以及氮化鎵的量子點。我們在矽(100)基板上鍍以金薄膜來作為成長異質結構奈米線的催化劑,在高溫爐中控制其成長壓力、成長溫度與固體源(solid source)鎵的溫度,以二階段成長的方式來成長異質結構奈米線。第一階段先以奈米碳管包住氮化鎵奈米線的方式成長,接著將乙炔氣體關掉,成長第二階段的氮化鎵奈米線,試圖長出氮化鎵與碳管的異質結構奈米線。我們將成長出來的奈米線在SEM與TEM之下看它的表面型態與晶格結構,最後再以光致螢光光譜以及吸收光譜來分析它的光學特性。另一方面,我們嘗試成長具有量子效應的氮化鎵量子點。在矽(100)基板上鍍以金薄膜來作為成長氮化鎵量子點的催化劑,在高溫爐中控制其成長壓力、成長溫度和固體源(solid source)鎵的溫度,並維持30分鐘至五個小時不等,試圖長出氮化鎵的量子點。我們將成長出來的量子點以SEM來觀察它的表面結構,並以光至螢光光譜分析它的光學特性。 In this thesis, combining vapor phase transport technology with metal-catalyzed the growth of GaN nanostructure onto silicon substrate is the main purpose. In this study, 5nm-thick Au thin film used as catalyst for synthesizing nanowires was sputtered onto monocrystalline silicon(100). Solid source of gallium, NH3, N2, C2H2 gases were used as Ga, N, and C precursors respectively, and H2 used to carry O on N2 gas and solid source Ga. By making use of the 2-steps to grow GaN-GaN@CNT heterostructure nanowires. The structural characteristic of the material was examined with scanning transmission electron microscope, PL spectra and X-ray powder diffraction.In addition, we attempt to synthesize GaN quantum dots by using vapor phase transport. We still sputter Au on silicon(100) as catalyst for synthesizing quantum dots. Solid source of gallium, NH3, N2 gases were used as Ga, N, and H2 used to carry O on N2 gas and solid source of gallium. The structural characteristic of the material was examined with scanning transmission electron microscope and photoluminescence spectra.