English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4217854      Online Users : 543
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/385


    Title: 類神經網路於鞋墊舒適度預測與評價
    Other Titles: Prediction and Evaluation of Fitness for Shoe Insert with Artificial Neural Networ
    Authors: 陳靜如
    Chen, Ching-Ju
    Contributors: 王中行
    Wang, Chung-Shing
    東海大學工業設計學系
    Keywords: 舒適度評價;倒傳遞類神經網路;灰關聯;鞋墊;足壓
    Comfort Evaluation;Back-Propagation Neural Network;Grey-Relational;Insole;Plantar Pressure
    Date: 2010
    Issue Date: 2011-01-03T05:04:32Z (UTC)
    Abstract: 本研究以人因「舒適度」為探討方向,並以足部產品的「鞋墊」作為對象,設計一個以足底壓力(簡稱足壓)為前提的灰關聯(Grey Relational)評價模式,找出該足型與鞋墊樣本中關聯度最高的鞋墊款式,當成最適合的鞋墊選項,作為後續類神經網路(Artificial Neural Network, ANN)的「足壓-鞋墊」之訓練樣本對。藉由多次的疊代計算,類神經網路將擁有足夠的引申能力,能自動針對所輸入的足壓資料進行分群,從現有的鞋墊樣本中找出適合測試者之鞋墊款式,達成本研究最終目的。因此,本研究使用倒傳遞類神經網路(Back-Propagation Neural Network, BPNN)技術,將專家經驗與灰關聯分析技術轉換成數學模式,使不了解相關領域的工業設計師,參考類神經網路的計算所得之分群結果,正確進行設計決策,以縮短設計週期,並滿足顧客的個別差異性需求。
    本論文的具體研究成果與貢獻如下:
    1. 提供足部的力學實驗作為實例之驗證對象。
    2. 探討足壓與鞋墊的舒適度關係。
    3. 運用灰關聯於足壓資料的舒適度評價計算。
    4. 驗證類神經網路的學習與分群效果。
    5. 以類神經網路進行舒適度資料的學習,並作最適鞋墊的預測。
    The purpose of the research is to estimate the comfort of a foot with different insoles by using the grey-relational approach based on the plantar pressure. When we find the most-related sample between foot shapes and insoles, we can put them into the artificial neural network (ANN) as the training pair (pressure-insole) for network training. After training iterations, the network will have enough generalizing capability to classify the pattern of the plantar pressure. Back-Propagation neural network (BPNN) is used to convert expertise and to classify insoles.Referring to the classified results estimated by the network, designer who does not master the related domain can make correct decisions when design project is proceeding. Furthermore, this approach can efficiently reduce the design-cycle time and meets the customers’ demands. Results and contributions in this paper are shown in the following:1. To conduct a foot experiment to verify research assumptions.2. To discuss the related comfort factors between the foot shape and insoles 3. To investigate validity of the gray-relational approach to estimate the comfort of foot based on the plantar pressure data.4. To verify the validity of ANN’s learning and classifying5. To use ANN which learning from the comfortable data to predict the most appropriate insole.Keywords: Plantar Pressure, Insole, Grey-Relational, Back-Propagation Neural Network, Comfort Evaluation
    Appears in Collections:[工業設計學系所] 碩士論文

    Files in This Item:

    File Description SizeFormat
    098THU00038008-001.pdf3125KbAdobe PDF2202View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback