Abstract: | 本論文於含界面活性劑DBSA之溶液中製備Ppy/Al2O3/Al,進行Ppy/Al2O3/Al之性質分析,最後將Ppy/Al2O3/Al試片組裝成電容器,測試其電容性質。 首先在不同條件下以定電流法製備Ppy/Al2O3/Al,探討製備過程中製備條件對電壓成長曲線之影響,探討的條件包含:電流密度、鋁箔前處理條件、緩衝溶液與非緩衝溶液中DBSA濃度、?咯單體濃度與製備溫度。在性質分析上分別以SEM分析鋁箔與Ppy/Al2O3/Al之表面組態,ESCA分析Al2O3/Al與Ppy/Al2O3/Al表面之化學態與元素種類,四點探針量測Ppy/Al2O3/Al之表面阻抗與AAS量測溶液中鋁離子之濃度,在電容性質分析上以漏電電流表量測漏電流與以LCR 電表量測其電容量、tan δ與ESR。 在表面性質分析上發現鋁箔經NaOH溶液之化學蝕刻(前處理)後,其表面為細胞狀之組態,而表面之主要成分為AlO2-,經化成後其表面轉變為Al2O3,而在SEM與EDS分析上吾人發現於0.1M DBSA與0.1M?咯單體中以0.6 mA cm-2之電流密度於6℃下,終止電壓為20V,製備所得之Ppy/A l2O3/Al之聚?咯厚度為10mm。 鋁箔於0.1M NaOH浸泡60分鐘後,以0.6 mA cm-2之定電流於0.1M DBSA與0.1M?咯單體溶液中,在6℃下製備Ppy/Al2O3/Al,終止電壓為20V,可得到在6.3V下之漏電流為0.472μA,電容量為522.9 nF cm-2,tanδ=13.4﹪與ESR=8.156Ω。 以製備之Ppy/Al2O3/Al組裝完成之電容器漏電流可藉由在0.02M DBSA溶液中,進行再化成修補氧化膜,在適當之條件控制下,可以達到可接受之漏電流值。於未經蝕刻之鋁箔上製備所得之Ppy/Al2O3/Al,利用0.02M DBSA溶液,控制電壓為15V進行再化成10分鐘,可將其漏電流之值減低至可接受之範圍;但若利用電蝕刻之鋁箔製備所得之Ppy/Al2O3/Al之試片,則必須在相同之化成液與電壓下進行60分鐘之氧化膜修補,才能有效的將漏電流減低至可接受值。 以電蝕刻方式可增加電極之有效面積,增加電蝕刻之電流密度與溫度皆能提高電極之有效面積,並增加Ppy/Al2O3/Al之電容量。在0.66 M HCl水溶液中以200mA cm-2之定電流,於60℃下進行電蝕刻15秒,以此鋁箔基材進行Ppy/Al2O3/Al之製備,經再化成後,可得到漏電流值為0.124μA,電容量為746 nF cm-2,其漏電流為可接受之範圍,電容量與相同條件下以未蝕刻鋁箔製備之Ppy/Al2O3/Al比較,增加了88.76﹪。 The properties of Ppy/Al2O3/Al prepared in the presence of DBSA surfactant are analyzed in this thesis. The Ppy/Al2O3/Al solid capacitor is assembled and the capacitive characteristics are also measured in this work. The effect of experimental conditions including the current density, the Al foil pretreatment conditions, the concentration of pyrrole, the temperature and the concentration of DBSA in the buffer and non-buffer solutions on the relationship between the potential and run time in the preparation of Ppy/Al2O3/Al is studied. The surface morphologies of Al foil and Ppy/Al2O3/Al, the chemical state and elements of Al2O3/Al and Ppy/Al2O3/Al, the surface resistivity of Ppy/Al2O3/Al are analyzed by SEM, ESCA and four probe conductivity meter, respectively. The concentration of Al+3 is analyzed by AAS. The leakage current and the capacitive properties including capacity, tan d and ESR are measured by using the leakage current meter and the LCR meter, respectively. The cell type structure is found from the surface analysis of Al foil after pretreatment with NaOH aqueous solution. AlO2- found to be the main component of Al foil pretreated with NaOH aqueous solution is transformed to Al2O3 in the formation process. The thickness of polypyrrole on Ppy/Al2O3/Al prepared in the conditions of 0.1M DBSA, 0.1M pyrrole, 6oC, 0.6 mA cm-2 and ceased potential of 20V is measured by using SEM and EDS to be 10 mm. The leakage current (6.3 V), capacity, tan d and ESR of Ppy/Al2O3/Al that is prepared on Al foil pretreated with 0.1M NaOH for 60 min in the conditions of 0.1M DBSA, 0.1M pyrrole, 6oC, 0.6 mA cm-2 and ceased potential of 20V are obtained to be 0.472 mA, 522.9 nF cm-2, 13.4% and 8.156 W, respectively. The leakage current of Ppy/Al2O3/Al prepared in this thesis can be depressed to be an acceptable value by reforming the oxide film in the 0.02M DBSA with the suitable conditions. The acceptable leakage currents of Ppy/Al2O3/Al(non-etching) and Ppy/Al2O3/Al(electrochemical etching) can be obtained by the reforming the oxide film in the 0.02M DBSA with the cell potential of 15 V for 10 and 60 min, respectively. The effective area and the capacity of Ppy/Al2O3/Al based on electrochemical etching Al foil are significantly increased with the increase in the current density and temperature in the electrochemical etching process. The acceptable leakage current and capacity of Ppy/Al2O3(reformed)/Al prepared on Al foil with the electrochemical etching conditions of 0.66M HCl aqueous solution, 200 mA cm-2 and 60oC for 15 s are found to be 0.124 mA and 746 nF cm-2, respectively. The capacity of Ppy/Al2O3/Al(electrochemical etching) is increased in 88.76% compared with Ppy/Al2O3/Al(non-etching). |