English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4246811      Online Users : 351
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/4343


    Title: 醫學影像之診斷-應用粗集合理論與類神經網路
    Other Titles: Diagnosis of Medical Image - Application of Rough Set Theory and Neural Network
    Authors: 李昆鴻
    Contributors: 黃欽印;潘忠煜
    Huang, Chin-Yin;Pan, Chung-Yu
    東海大學工業工程與經營資訊學系
    Keywords: 核子醫學;靶心圖影像;粗集合理論;類神經網路
    Nuclear Medicine;Bull’s Eye Image;Rough Set Theory;Neural Network
    Date: 2003
    Issue Date: 2011-05-19T06:00:10Z (UTC)
    Abstract: 在影像診斷學的領域中,核子醫學功能性影像對疾病早期偵測的角色日趨重要,尤其是在定量分析上,更有其他構造性影像無所取代的地位,本研究把目標設定在核子醫學之極座標靶心圖影像的部分。本研究的動機乃起因於醫師對於判別靶心圖有所疑惑,目前醫師依其經驗藉由靶心圖來判斷病人的心臟是否有病變,若出現錯誤的診斷(False-Positive),造成醫療資源的浪費、醫療成本的增加與病患的抱怨等,無疑的,也帶給這些病人額外的負擔及時間的浪費。 本研究提出一套結合粗集合理論(Rough Set Theory)與類神經網路兩種不同機制的系統,對靶心圖影像與病患資料做相關定性與定量的處理。透過粗集合理論對於知識解釋的優點彌補類神經網路暗箱模式的處理機制,並且利用訓練後的類神經網路協助診斷粗集合理論所無法定義規則的資料我們利用臨床醫師的觀念與文獻的說明於靶心圖影像做處理,作為特徵值擷取上的方法,以協助醫師診斷靶心圖影像,降低誤診的機率,進而提升整體醫療品質,另外,也可作為新進醫師的診斷依歸。實證部份,分別比較本研究所提出的系統、類神經網路與專業醫師三者的差異,結果顯示本研究所提出的系統在明確性(Specificity)與準確率(Accuracy)的表現上,皆優於類神經網路與專業醫師,對於醫師將來所做診斷有個很好的依據。
    Nuclear medicine is a specialty that uses radioactive substance in the diagnosis and treatment of diseases. In contrast to other conventional imaging procedures, nuclear medicine imaging is unique in that it can provide both functional and structural Information of an organ simultaneously. In this study, we propose a new system that diagnoses the polar bull’s eye images based on nuclear medicine, combining rough set theory and neural network. We can get reduced patients’ textual table, which implies that the number of evaluation criteria is reduced with no information loss through rough set approach. And then, a new table which combines reduced patients’ textual table and image table is used to develop classification rules and train neural network to get rule-base and trained neural network. The effectiveness of our methodology is verified by experiments comparing neural network approach and the physician with our new system. According to the result, the specificity and the accuracy in our new system are better than neural network approach and the physician.
    Appears in Collections:[工業工程與經營資訊學系所] 碩博士論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML337View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback