Loading...
|
Please use this identifier to cite or link to this item:
http://140.128.103.80:8080/handle/310901/4587
|
Title: | 大學生網路成癮、社會支持與生活適應關係之研究 |
Other Titles: | The Relationship between Internet Addiction, Social Support, and Life Adjustment among University Students |
Authors: | 楊正誠 Yang, Cheng-cheng |
Contributors: | 陳世佳 Chen, Shr-Jya 東海大學教育研究所 |
Keywords: | 網路成癮;社會支持;生活適應;結構方程模式 Internet Addiction;Social Support;Life Adjustment;Structural Equation Modeling |
Date: | 2003 |
Issue Date: | 2011-05-19T06:23:05Z (UTC)
|
Abstract: | 本研究之主要目的為探究大學生網路成癮、社會支持與生活適應之間的關係,並比較不同背景變項大學生網路成癮之差異。本研究採問卷調查法,使用「中文網路成癮量表」、「大學生生活量表」、「社會支持量表」與相關背景變項(包含性別、年級、主要網路使用形式、每週上網時間、主要網路使用動機)作為研究工具,並以中部地區587名大學生為研究對象,所收集的資料,經過描述性統計、單因子多變量變異數分析、以及結構方程模式等統計方法進行資料分析,以驗證研究假設。 本研究之主要研究發現如下: 一、大學生網路成癮高危險群之網路使用行為 (一)本研究之大學生網路成癮高危險群當中,以男性為居多(86.7﹪)。 (二)大學生網路成癮高危險群的上網主要採用形式以使用自己的電腦(寬 頻撥接)為最多(43.3﹪),其次是使用宿舍網路(20﹪)以及利用學校 電算中心(20﹪) ,利用網路咖啡廳(10﹪)或是其他方式(6.7﹪)較 少。此外,網路成癮高危險群中沒有人使用傳統數據機撥接(0﹪)作 為上網媒介。 (三)在每週上網時間方面,網路成癮高危險群集中在每週上網15小時以 上,特別是36小時以上佔了絕大多數(56.7﹪),其餘依次是22-28小 時(26.7﹪)、29-35小時(10﹪)、15-21小時(6.7﹪)。 (四)大學生網路成癮高危險群的主要使用網路動機以使用BBS(36.7﹪)為 最多,其次為查找資料(23.3﹪)與玩網路遊戲(20﹪),尋求刺激(色 情、賭博)則佔了13.3﹪,其餘依次為上聊天室/ICQ/MSN(3.3﹪)、其 他(3.3﹪),收發電子郵件則無。 二、不同背景變項之大學生網路使用者之網路成癮差異性 (一)男性大學生和女性大學生在網路成癮量表及其各分量表之平均得分呈 現顯著差異,男性顯著高於女性,顯示男性大學生有較高的網路成癮 可能性。 (二)不同年級之大學生在網路成癮量表及其各分量表之得分,不具顯著差 異性。 (三)不同上網採用形式之大學生在網路成癮量表全量表及分量表網路成癮 耐受性、強迫上網行為、時間管理問題、人際健康問題之得分具顯著 差異。經事後比較後發現,寬頻撥接、網路咖啡與宿舍網路為網路成 癮性較高的三種上網採用形式。 (四)不同每週上網時間之大學生在網路成癮量表總得分及各分量表之得分 均呈現出顯著差異,且研究發現均指向,每週上網時間越長之大學 生,其網路成癮的可能性越高。 (五)不同網路使用動機之大學生在網路成癮量表總得分及各分量表之得分 均呈現出顯著差異。經事後比較後發現,尋求刺激(色情、賭博)、網 路遊戲、使用聊天室ICQ/MSN與使用BBS為網路成癮性較高的四種網路 使用動機。 三、主要研究變項所建構之理論模式 (一)本研究所建構的大學生網路成癮、社會支持與生活適應之結構方程模 式,經過修正之後,在各項適配指標皆獲得支持,具有良好之模式適 配度。 (二)社會支持對於大學生生活適應具顯著之直接效果.91。 (三)社會支持對於大學生網路成癮具顯著之直接效果-.35,生活適應對於 大學生網路成癮具顯著之直接效果-.56。 (四)社會支持透過對於大學生生活適應的顯著直接效果.91,產生對於網 路成癮之顯著間接效果-.51。 本研究根據上述研究結果,提出相關建議供未來研究與教育輔導工作之參 考。 The main purposes of this study were to explore the relationship between internet addiction, social support and life adjustment among university students and to verify the difference of CIAS scores between different background factors. Therefore, this study used the “CIAS”, “College Adjustment Scale”, “SSQ” and background factors(gender, grade, primary internet linking methods, weekly internet hours, primary internet using reasons) as the instruments. The 587 subjects of this study were sampled from four universities in Taichung. Data were analyzed by descriptive and inferential statistics, including MANOVA and SEM. The main findings of this study were as follows: 1.The internet using behavior of high-risk students (1)Male students had high percentage(86.7﹪) among high-risk students. (2)The percentage of primary internet linking methods among high-risk students were, personal computer(Lan)( 43.3﹪), dormitory internet(20﹪), campus computer center(20﹪), internet café(10﹪), other(6.7﹪), personal computer(Dial- up)( 0﹪). (3)The percentage of weekly internet hours among high-risk students were, above 36 hours(56.7﹪), 22-28 hours(26.7﹪), 29-35 hours(10﹪), 15-21 hours (6.7﹪). (4)The percentage of primary internet using reasons among high- risk students were, using BBS(36.7﹪), searching information (23.3﹪), on-line game(20﹪), searching excitement(sex, gambling)(13.3﹪), Chat Room/ICQ/MSN(3.3﹪), other(3.3﹪) , E-mail(0﹪). 2.The influence of background factors on internet addiction (1)Male students had significant higher CIAS scores than female students. (2)There were no significant different CIAS scores between different grade students. (3)There were significant different CIAS scores between different primary internet linking method. The personal computer(Lan), internet café, and dormitory internet were high addictive internet linking methods. (4)There were significant different CIAS scores between different weekly internet hours. The higher weekly internet hours, the higher CIAS scores. (5)There were significant different CIAS scores between different primary internet using reason. Searching excitement (sex, gambling), on-line game, Chat Room/ICQ/MSN, using BBS were high addictive internet using reasons. 3.The SEM model of internet addiction, social support and life adjustment among university students (1)The revised SEM model of this study was supported by the Lisrel analysis. (2)Social support had significant positive direct effect(.91) on life adjustment. (3)Social support had significant negative direct effect(-.35) on internet addiction, and life adjustment had significant negative direct effect(-.56) on internet addiction. (4)Through the significant positive direct effect(.91) on life adjustment, social support had significant negative indirect effect(-.51) on internet addiction. In the final part of this study, some suggestions for parents, teachers, schools, government and future study were made according to the findings. |
Appears in Collections: | [教育研究所] 碩士論文
|
Files in This Item:
File |
Size | Format | |
091THU00331009-001.pdf | 2652Kb | Adobe PDF | 3858 | View/Open |
|
All items in THUIR are protected by copyright, with all rights reserved.
|