English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4237914      Online Users : 438
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/5052


    Title: 以中英文同義關鍵字集合為基礎之論文分群研究
    Other Titles: A Study of Theses Clustering Method Based on Synonymous Chinese and English Keyword Sets
    Authors: 黃忠義
    Huang, Chung-Yi
    Contributors: 陳榮靜;黃育仁
    Chen, Rung-Ching;Huang, Yu-Len
    東海大學資訊工程學系碩士在職專班
    Keywords: 論文分群;中英文同義關鍵字;關鍵字集合
    Theses Clustering;Synonymous Chinese and English Keyword;Keyword Set
    Date: 2004
    Issue Date: 2011-05-19T07:36:26Z (UTC)
    Abstract: 在學術研究過程中,查詢其他學者、專家的研究成果與心得是一項不可或缺的研究活動。但是仍然有許多不同語言的論文因為翻譯上的差異,而無法在論文資料庫上作精確的查詢。在本篇論文中,我們提出以包含中英文關鍵字的雙語同義關鍵字集合為基礎之論文分群研究。本系統會先產生中英文同義關鍵字集合,再以此同義關鍵字集合資料庫對論文作自動分群處理。此方法不僅解決使用現有數位化辭典無法收錄新的關鍵字的問題,亦可解決大多數知識管理與資料探勘系統中同義關鍵字的問題。此外,我們也使用叢集系統來解決大部份文件分群系統的效能問題。透過多部電腦的計算處理,此系統不僅可以節省大量的時間,亦可達到高可用性與負載平衡。經由我們的實作結果,此方法可獲得更有效的分群結果。
    Searching other published paper is a required activity for a researching progress. But there are still many various languages presentation articles, that make the precisely query hard to achievement. In this thesis, we propose an automatic theses clustering method based on the bilingual synonymous keyword sets which include Chinese and English keywords. First, the system generates synonymous Chinese and English keyword sets, and then bases on synonymous Chinese and English keyword sets clustering the theses automatically. The method not only solves the weakness of using digital dictionaries to do new keywords clustering problem, but also solves the synonymous keywords problem in most knowledge management or data mining method. And we also used cluster technology to solve traditional documents clustering performance problem. Through many computers’ process, the system not only can save a lot of time, but also attain to high availability and loading balance. The primary experiments prove that the system makes the theses clustering work effectively.
    Appears in Collections:[資訊工程學系碩士在職專班] 碩士論文

    Files in This Item:

    File SizeFormat
    092THU00392006-001.pdf1364KbAdobe PDF1View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback