English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4247090      Online Users : 435
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/5472


    Title: 整合異質生物資料計算平台的設計與實作
    Other Titles: Design and Implementation of Computational Platforms for Integration of Heterogeneous Biological Data
    Authors: 熊怡君
    Hsiung, Yi-Chun
    Contributors: 楊朝棟
    Yang, Chao-Tung
    東海大學資訊工程學系
    Keywords: 網格計算;叢集計算;生物資訊;生物網格
    Grid;Cluster;Bioinformatics;BioGrid;XML;BLAST;FASTA;ClustalW
    Date: 2005
    Issue Date: 2011-05-19T08:18:48Z (UTC)
    Abstract: 生物資料庫越來越龐大也越複雜,這結果致使科學家必須有效率的去與各個基因序列作比對。而一些生物資訊的相關軟體,例如NCBI的Blast、FASTA與ClustalW證實可被用來快速的處理序列比對的問題。這些比對中,不管是結構特徵或蛋白質序列的搜尋都是生物資訊學的重點核心。當在這些龐大序列作搜尋時,所有的動作皆需要高速、高效的計算能力。而近年來電腦運算處理的速度以指數攀升,配置上透過新興的Grid(網格)與既有的PC Cluster(個人電腦叢集)技術做整合,便可以與超級電腦相較勁,提高了生物資訊的普遍性。由於現在發展生物資訊的各個研究單位可能使用不同的平台,不同的資料庫來存放他們的研究資料。因此存放資料的格式,便會有所差異。這會造成在資源共享上有所困難。為了改善這個問題,我們將生物軟體的比對結果,如Blast、FastA的比對結果,轉換成XML的方式來儲存。利用XML的跨平台特性,增加生物資訊的流通性與一致性。在本論文中,我們實作一個生物資訊應用平台:包含底層的高效能計算環境(Grid 與PC Cluster 系統),多重介面的入口網站來操控此生物資訊系統,簡化使用的複雜度,讓不屬於IT(Information Technology)產業界的人士能有效的利用這高效環境,以及一個將生物資料轉換成XML格式的轉換工具。
    Biology databases are diversified and massive. As a result, researchers must compare each sequence with vast numbers of other sequences. Programs such as BLAST, FASTA, ClustalW, etc., were written to enable rapid database searches for query sequences. Comparison, whether of structural features or protein sequences, lies at the heart of bioinformatics. These activities require high-speed, high-performance computing power to search through and analyze huge amounts of data, and industrial-strength databases to perform a wide range of data-intensive computing functions. Grid computing and Cluster computing provide ways to meet these requirements. Biological data exist all over the world in various web services that help biologists search for and extract useful information. The data formats produced by the various biology tools are heterogeneous. Thus, powerful tools are needed to handle the complex and difficult task of integrating these heterogeneous biological data. This paper describes an approach to solving this problem using XML technologies. We report on implementing an experimental distributed computing application for bioinformatics consisting of basic high-performance computing environments (Grid and PC Cluster systems), multiple interfaces at user portals that provide useful graphical interfaces to enable biologists who are not IT specialists to benefit directly from the use of high-performance technology, and a translation tool for converting biology data into XML format.
    Appears in Collections:[資訊工程學系所] 碩士論文

    Files in This Item:

    File SizeFormat
    093THU00394020-001.pdf833KbAdobe PDF134View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback