English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4208525      Online Users : 720
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/6017


    Title: 均勻著色在二部圖之研究
    Other Titles: THE EQUITABLE COLORING OF THE BIPARTITE GRAPHS
    Authors: 林承穎
    Lin, Chen-Ying
    Contributors: 陳伯亮
    Chen, Bor-Liang
    東海大學應用數學研究所
    Keywords: 二部圖;著色;均勻著色;均勻著色數;均勻著色臨界數;最大度數
    bipartite graph;coloring;equitable coloring;equitable chromatic;maximun degree
    Date: 1995
    Issue Date: 2011-05-25T08:38:59Z (UTC)
    Abstract: 如果一個圖形G 的頂點被分成k 個獨立子集,且彼此的頂點個數差最多為 一,則稱G 可均勻k -著色。一個圖形G 可均勻n 著色之最小整數n ,稱 為 G 的均勻著色數。任意n 大於k 且G 是均勻n 著色之最小整數k ,則 稱為G的均勻著色臨界數。在這篇論文中,我們主要探討的是:對一個二 部圖G,給定一常數k ,當其中一部分的點很少時,能對G 均勻著k 色(甚 至k以上)的條件,加以推廣後,也能刻劃一般的二部圖,能均勻著k 色( 甚至k以上)的條件.
    If the vertices of a graph G can be partitioned into k indepen- dent set and the difference of the sizes of any two sets is less than 1, then G is said to be equitably k-colorable. The smallest integer n for which G can be equitably n-colorable is called the equitable chromatic number of G. The smallest integer k for which G is equieably n-colorable for every n is greater than or equal to k is called the equitable threshold chromatic of G. In this thesis, we first discuss that: for a bipartite graph G, given a fixed number k, the sufficient condition to equitably k (even the number greater than k) -colorable on G, when one part of G has small size. Generalizing this result, we can classify the suffi- cient condition of G to be equitably k (even the number greater than k) -colorable.
    Appears in Collections:[應用數學系所] 碩博士論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML247View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback