English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4247039      Online Users : 408
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/6479


    Title: 嵌入限制條件於基因演算法之研究--以自然產及剖腹產資源分配為例
    Other Titles: A Study of Constraint Embedded GA
    Authors: 陳文瑞
    Contributors: 王偉華
    Wang, Wei-Hua
    東海大學工業工程與經營資訊學系
    Keywords: 基因演算法;限制條件滿足問題;基原;JSP問題
    Genetic Algorithm;constraints handling mechanism;Job-Shop Problem
    Date: 2001
    Issue Date: 2011-05-25T09:32:25Z (UTC)
    Abstract: 基因演算法廣泛地被運用於各種不同問題的最佳化排程上,且都證明有不錯的求解品質。然而基因演算法本身並沒有處理限制條件的能力,但在實際工程問題上,大部分為包含限制條件的最佳化問題。因此必須以額外的機制將限制條件問題,轉換為無限制條件問題。一般在基因演算法中用來處理限制條件的方法有四種:1.保留合理解,非合理區的解完全刪除。2.採用懲罰函數法。3.採取分開合理區和非合理區的解來處理。4.混合法。 一般結合基因演算法與限制條件滿足問題,在基因運算子演算過程中,並沒有加入限制條件的概念。為分段式求解過程,先經由基因運算子產生新個體後,再判斷是否符合限制條件。如不符合則再重新產生新個體,以試誤法的方式直到產生符合限制條件為止。因此搜尋點會落於不合理解區域,造成搜尋時間上的浪費。 本研究重新設計基因演算法的運算子及表示法,提出一限制型基因演算法(Constrained_GA),將限制條件以基原的特性加入染色體的訊息中,使限制條件嵌入基因運算子演算過程。因此染色體中較佳的基原得以被保存,且將搜尋點落在部分合理解範圍內。本方法證明運用於線性最佳化問題及JSP(Job-Shop scheduling problems)問題上,可獲得不錯的求解品質。 本研究以基因演算法運用於醫療臨床路徑排程問題,初步探討基因演算法於醫療服務業的可行性。
    The Genetic Algorithm (GA) has been widely applied in variant optimization problems and reported as satisfied in many cases. It is well known that the constraint features are everywhere in the real problem. Many research have been tried to include the constraints handling capability in the GA process. Usually, the constraints handling mechanism (CSM) has been integrated into the GA process as an add-on. After each iteration, the possible solutions will be checked via the CSM before be marked as the member of the new population. In this approach, many trial and errors will be conducted to display the constraints handling feature. However, in our approach, we integrate the constraint handling into the GA process. That is, for the new generated population, without repeated check and search, all members of the population will be guaranteed to satisfy at least one constraint. This approach has been successfully applied to the linear optimization problems and Job-Shop Problem problems respectively.
    Appears in Collections:[Department of Industrial Engineering and Enterprise Information] Theses and Dissertations

    Files in This Item:

    File SizeFormat
    089THU00030028-001.pdf2317KbAdobe PDF464View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback