English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4231628      Online Users : 675
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/6912


    Title: 對稱雙盤上的spectralNevanlinna-Pick插值問題
    Other Titles: Spectral Nevanlinna-Pick Interpolation On Symmetrized Bidisc
    Authors: 林天得
    Lin, Tien-De
    Contributors: 葉芳柏
    Yeh, Fang-Bo
    東海大學數學系
    Keywords: 對稱雙盤;Carath$\acute{e}$odory 距離;Kobayashi距離;Schur定理;spectral Nevanlinna-Pick問題;插值問題
    symmetrized bidisc;Carath$\acute{e}$odory distances;Kobayashi distances;Schur theorem;spectral Nevanlinna-Pick problem;interpolation problem
    Date: 2001
    Issue Date: 2011-05-25T09:46:29Z (UTC)
    Abstract: 考慮symmetrized bidisc $\Gamma_{2}$:% $$\Gamma_{2}\triangleq \{(s,p):\lambda^{2}-s\lambda+p=0,~\lambda \in \mathbb{C},~|\lambda|\leq1\}$$% 定義其上的 spectral Nevanlinna-Pick 插值非平問題({\rm Int}erpolation non-flat problem)為:\\ % 給定$\alpha_{1},~\alpha_{2} \in \mathbb{D},~(s_{1},0),~(s_{2},0) % \in {\rm Int}~\Gamma_{2} $,% $\varphi : \mathbb{D} \longrightarrow {\rm Int}~\Gamma_{2}$,為解析函數,% 使得~$\varphi(\alpha_{1}) = (s_{1},0)$,$\varphi(\alpha_{2}) = (s_{2},~0)$,% 藉由Carath$\acute{e}$odory 距離與Kobayashi距離相等的假設下,% 利用Schur定理,吾人建構出滿足此問題的解析函數$\varphi$。
    Consider symmetrized bidisc $\Gamma_{2}$:% $$\Gamma_{2}\triangleq \{(s,p):\lambda^{2}-s\lambda+p=0,~\lambda \in \mathbb{C},~|\lambda|\leq1\}$$% and spectral Nevanlinna-Pick Interpolation non-flat problem on it as:\\ % Given $\alpha_{1},~\alpha_{2} \in \mathbb{D},~(s_{1},0),~(s_{2},0) % \in {\rm Int}~\Gamma_{2} $,% $\varphi : \mathbb{D} \longrightarrow {\rm Int}~\Gamma_{2}$,is analytic,% ~such that~$\varphi(\alpha_{1}) = (s_{1},0)$,$\varphi(\alpha_{2}) = (s_{2},~0)$,% ~by the equality of Carath$\acute{e}$odory and Kobayashi distances,% ~and Schur theorem, ~we can find $\varphi$ that we want.
    Appears in Collections:[應用數學系所] 碩博士論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML252View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback