English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4241993      Online Users : 501
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/8016


    Title: 混合物實驗設計法配製高分子電解質與特性分析
    Other Titles: The Polymer Electrolytes are Prepared by the Mixture Design Method and Analyse the Properties
    Authors: 蕭偉利
    Hsiao, Wei-Li
    Contributors: 杜景順
    Do, Jing-Shan
    東海大學化學工程與材料工程學系
    Keywords: 高分子電解質;電解質;混合物實驗設計法
    SPE;polymer electrolyte;mixture design
    Date: 1997
    Issue Date: 2011-06-15T02:37:25Z (UTC)
    Abstract: 摘 要 本論文首先利用混合物實驗設計法探討PEO-LiCF3SO3-Tetraglyme 和PEO-LiCF3SO3-Tetraglycol兩系統之最佳導電度組合。利用Zeolite 和g-Al2O3添加至高分子電解質系統中,討論其對高分子電解質性質之 影響,最後將製備之高分子電解質組裝成Li / SPE / MnO2電池,探討 其放電特性。在混合物實驗設計法中改變PEO-LiCF3SO3-Tetraglyme和 PEO-LiCF3SO3-Tetraglycol高分子電解質之成分比例,實驗結果顯示, 當電解質組成範圍為15-67% (wt) PEO、10-20% LiCF3SO3及34-83% Tetraglyme與10-77% PEO、10-20% LiCF3SO3及21-88% Tetraglycol 可得最佳導電度。22.0PEO / 19.0LiCF3SO3 / 59.0Tetraglyme與20.0 PEO / 17.0LiCF3SO3 / 63.0Tetraglycol(wt%)高分子電解質膜有較 佳的室溫導電度,分別為8.23×10-5S / cm及7.37×10-5S / cm。另外 ,添加Zeolite和g-Al2O3於高分子電解質中,可增加電解質之機械性質 ,且可增加導電度。 由線性掃描伏安法分析製備之高分子電解質之氧化分解電位,其分 解電位介於4.8V~5.4V之間。此外,添加Zeolite有增加氧化分解電位的 能力。 分析製備之高分子電解質鋰離子傳遞係數發現,在PEO-LiCF3SO3- Tetraglyme系統中,當22.0PEO / 19.0LiCF3SO3 / 59.0Tetraglyme + Zeolite(Zeolite / (PEO+LiCF3SO3 + Tetraglyme)=0.2)之下,在 55℃具有最大之tLi+,其值為0.27;而PEO-LiCF3SO3-Tetraglycol系統 中,當20.0PEO / 17.0LiCF3SO3 / 63.0Tetraglycol + Zeolite (Zeolite / (PEO+LiCF3SO3 + Tetraglycol)=0.2)時,55℃下之最大 tLi+則為0.26。傳遞係數tLi+值會隨導電度的增加而增加,亦會隨著溫 度升高而逐漸增加。 利用循環伏安法分析鋰離子的沈積反應,由實驗結果發現鋰離子的 沈積反應為完全不可逆之行為。由此分析中可求得鋰離子在22.0PEO / 19.0LiCF3SO3 / 59.0Tetraglyme + g-Al2O3(g-Al2O3 / (PEO+LiCF3SO3 + Tetraglyme)=0.1)與20.0PEO / 17.0LiCF3SO3 / 63.0Tetraglycol + g-Al2O3(g-Al2O3 / (PEO+LiCF3SO3 + Tetraglycol)=0.2)高分子電解 質中的擴散係數分別為1.89×10-8cm2 / s與1.66×10-8cm2 / s。並求得 兩系統中之ana與k0之關係式,分別為ana=3.17×10-2及 k0 =2.10×10-5 exp (-1.07 E0*)與ana=3.05×10-2及 k0 =1.77×10-5 exp (-1.03 E0*)。 將製備所得之高分子電解質組裝成Li / SPE / MnO2一次電池,發現 仍須在高於55℃之環境下才會有較高的放電電容量,且其放電速率應該 小於0.382 mA / cm2。在自放電現象方面,添加Zeolite和g-A2O3於高分 子電解質中,發現能抑制自放電現象,當添加Zeolite和g-A2O3至PEO- LiCF3SO3-Tetraglycol系統中,可使自放電率由6.2%減少為5.1%與5.3 % 。在55℃時以20.0PEO / 17.0LiCF3SO3 / 63.0Tetraglycol + Zeolite (Zeolite / (PEO + LiCF3SO3 + Tetraglycol)=0.2)組 裝成電池,具 有最佳的放電電容量,其值為2.10 mAh。
    Abstract The maximum coductivity compositions of PEO-LiCF3SO3-Tetraglyme and PEO-LiCF3SO3-Tetraglycol were studied in this thesis by using the mixture design method. Zeolite and g-Al2O3 were added to modify the solid polymer electrolytes( SPE). Using prepared SPE, the discharge characteristics of Li / SPE / MnO2 was also studied. The maximum conductivity composition intervals of two SPE systems were experimentally found as 15-67% (wt) PEO 、10-20% LiCF3SO3 and 34-83% Tetraglyme for PEO-LiCF3 SO3-Tetraglyme as were as 10-77% PEO 、10-20% LiCF3SO3 and 21-88% Tetraglycol for PEO-LiCF3SO3-Tetraglycol. The experimental also indicated that the maximum conductivities of PEO-LiCF3SO3-Tetraglyme and PEO-LiCF3SO3-Tetraglycol were 8.23×10-5S / cm and 7.37×10-5S / cm, respectively, and its compostions were 22.0PEO / 19.0LiCF3SO3 / 59.0Tetraglyme and 20.0 PEO / 17.0LiCF3SO3 / 63.0Tetraglycol(wt%)at room temperature. In addition, the mechainical characteristics and conductivity increased when Zeolite and g-Al2O3 were added to SPE. The decomposition voltages of the polymer electrolytes were obtained by the linear sweep voltammetry in the rang of 4.8V ~ 5.4V. The decomposition voltages of SPE increased as Zeolite added. The experimental results revealed that the maximum Li+ transfer numbers(tLi+) for the systems of PEO-LiCF3SO3-Tetraglyme, 22.0PEO / 19.0LiCF3SO3 / 59.0Tetraglyme + Zeolite(Zeolite / (PEO+LiCF3SO3 + Tetraglyme)=0.2)and PEO-LiCF3SO3-Tetraglycol, 20.0PEO / 17.0LiCF3SO3 / 63.0Tetraglycol + Zeolite(Zeolite / (PEO+LiCF3SO3 + Tetraglycol)=0.2)were 0.27 and 0.26, respectively, at 55℃. The Lithium ion transport number increased with increasing conductivity and temperature. The total irreverisible reaction was found in the deposition of Li+ at stainless steel by the results of cyclic voltammetry. Using cyclic voltammetry, the diffusion coefficient of Li+ in the 22.0PEO / 19.0LiCF3SO3 / 59.0Tetraglyme + g-Al2O3(g-Al2O3 / (PEO+LiCF3 SO3 + Tetraglyme)=0.1) and 20.0PEO / 17.0LiCF3SO3 / 63.0Tetraglycol + g-Al2O3(g-Al2O3 / (PEO+LiCF3SO3 + Tetraglycol)=0.2) were obtained as 1.89×10-8cm2 / s and 1.66×10-8cm2 / s, respectively. The parameter of ana were also evaluated as 3.17×10-2 and 3.05×10-2, and the relationships of k0 were obtained as 2.10×10-5 exp (-1.07 E0*) and 1.77×10-5 exp (-1.03 E0*). The better discharge capacity of Li / SPE / MnO2 was found when the operating temperature was larger than 55℃, and the discharge current density less than 0.382 mA / cm2. The results indicated that Zeolite and g-Al2O3 can inhibit the self-discharge of Li / SPE / MnO2. Comparison with PEO - LiCF3SO3 - Tetraglycol with no additive, the self-discharge fraction decreased from 6.2% to 5.1% and 5.3%, respectively, when Zeolite and g-Al2O3 were added to modify this SPE. When 20.0PEO / 17.0LiCF3SO3 / 63.0Tetraglycol + Zeolite (Zeolite / (PEO + LiCF3SO3 + Tetraglycol)=0.2) was used to prepare Li / SPE / MnO2, the maximum discharge capacity was found as 2.10 mAh at 55℃.
    Appears in Collections:[化學工程與材料工程學系所] 碩博士論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML264View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback