本研究計畫的重點是為製造業及運輸業在維修排程的決策過程,建?對應其決策情境的?學模式,並提出比文獻中?有效?的求解演算法,輔助決策經?人維修排程的決策,以提升群組機器及運輸?隊維修排程的決策品質,?低生產系統與運輸?隊發生的成本。研究計畫探討?個研究主題,分別是「群組機器維修排程問題」與「運輸?隊維修排程問題」;在本研究探討的問題情境中,期望藉著計畫性的維修工作?提高群組機械(或運輸?隊)的壽命,並提高其營運效?的可靠?,期望藉由決定其維修頻?與維修週期,同時考?整體群組機械系統(或是整體運輸?隊)的維修成本與營運成本,使其在達成滿足客戶需求(或是緊密?結供應鏈)目標的考?,同時使其單位時間的總成本能夠達到最小化。使整體群組機械系統(或是整體運輸?隊)在單位時間內發生的總成本達到最小化。為達到上述之目的,本研究計畫將對於每個研究主題,我們預期提出?種解法:(1)動態Lipschitz 最佳化演算法與(2)接合點搜尋演算法。為提出上述的?種解法,本計畫將深入探討?個研究主題之?學模式的??性質,針對該模式之最佳解結構,再提出有效?且可以保障品質的演算法。為驗證我們所提出的解法的效?,我們將以隨機實驗進?驗證,在求解?個研究主題之?學模式時,我們的解法較文獻中的啟發式演算法為佳。 In this study, we propose a new solution approach for solving the Maintenance Scheduling Problem for a Family of Machines (MSPFM). After reviewing the literature, we found that Goyal and Kusy's (1985) paper presented the only model that used a nonlinear function for the cost of operating a machine when studying the periodic maintenance scheduling problems. In our presentation of this paper, we first review Goyal and Kusy's (1985) mathematical model and their heuristic for solving the MSPFM. By analyzing the mathematical model, we show that the objective function of the MSPFM is Lipschitz. Therefore, we propose to solve the MSPFM using a Lipschitz optimization algorithm with a dynamic Lipschitz constant. Based on our random experiments, we conclude that the proposed dynamic Lipschitz optimization algorithm out-performs Goyal and Kusy's heuristic.