English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4242116      Online Users : 580
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/9350


    Title: 群組設備與運輸車隊最佳週期性維修排程策略之研究
    Other Titles: On Determining the Optimal Periodic Maintenance Scheduling Strategies for a Group of Machines and a Transportation Fleet
    Authors: 姚銘忠
    Yao, Ming-Jong
    Contributors: 行政院國家科學委員會
    東海大學工業工程與經營資訊系
    Keywords: 維修管理;群組設備;維修排程;運輸車隊;最佳解結構;搜尋演算法
    Maintenance management;Family of machines;Maintenance scheduling;Lipschitz;Global optimization
    Date: 2005
    Issue Date: 2011-06-17T06:20:26Z (UTC)
    Abstract: 本研究計畫的重點是為製造業及運輸業在維修排程的決策過程,建?對應其決策情境的?學模式,並提出比文獻中?有效?的求解演算法,輔助決策經?人維修排程的決策,以提升群組機器及運輸?隊維修排程的決策品質,?低生產系統與運輸?隊發生的成本。研究計畫探討?個研究主題,分別是「群組機器維修排程問題」與「運輸?隊維修排程問題」;在本研究探討的問題情境中,期望藉著計畫性的維修工作?提高群組機械(或運輸?隊)的壽命,並提高其營運效?的可靠?,期望藉由決定其維修頻?與維修週期,同時考?整體群組機械系統(或是整體運輸?隊)的維修成本與營運成本,使其在達成滿足客戶需求(或是緊密?結供應鏈)目標的考?,同時使其單位時間的總成本能夠達到最小化。使整體群組機械系統(或是整體運輸?隊)在單位時間內發生的總成本達到最小化。為達到上述之目的,本研究計畫將對於每個研究主題,我們預期提出?種解法:(1)動態Lipschitz 最佳化演算法與(2)接合點搜尋演算法。為提出上述的?種解法,本計畫將深入探討?個研究主題之?學模式的??性質,針對該模式之最佳解結構,再提出有效?且可以保障品質的演算法。為驗證我們所提出的解法的效?,我們將以隨機實驗進?驗證,在求解?個研究主題之?學模式時,我們的解法較文獻中的啟發式演算法為佳。
    In this study, we propose a new solution approach for solving the Maintenance Scheduling Problem for a Family of Machines (MSPFM). After reviewing the literature, we found that Goyal and Kusy's (1985) paper presented the only model that used a nonlinear function for the cost of operating a machine when studying the periodic maintenance scheduling problems. In our presentation of this paper, we first review Goyal and Kusy's (1985) mathematical model and their heuristic for solving the MSPFM. By analyzing the mathematical model, we show that the objective function of the MSPFM is Lipschitz. Therefore, we propose to solve the MSPFM using a Lipschitz optimization algorithm with a dynamic Lipschitz constant. Based on our random experiments, we conclude that the proposed dynamic Lipschitz optimization algorithm out-performs Goyal and Kusy's heuristic.
    Relation: 研究編號:NSC94-2213-E029-014
    研究期間:2005-08 ~ 2006-07
    Appears in Collections:[工業工程與經營資訊學系所] 國科會研究報告

    Files in This Item:

    There are no files associated with this item.



    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback