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Weighted Shapley Value for Multichoice Game

Chan-Chung Shen Ying-Keh Wu�

Abstract

Multichoice game is constructed by Hsiao and Raghaven [1]. They use action vectors to replace sets to

present the situation of cooperation of players in a game, and find the solution for multichoice game. Thus,

we can extend a classical game into a multichoice game whose players have many kinds of work levels.

Their weight system shows that each distinct player takes the same work level to mean the same behavior.

But this cannot be applied in the games when different player has the variant job. Improved multichoice

games offer a new weight system for multichoice games allowing each distinct player to have m+1 kinds

of work levels without restricting the behavior of each work level. Meanwhile, we are also interested in

the solution of improved multichoice games and we can reduce the solution found to Hsiao and Raghaven

[1], Kalai and Samet’s[2], and Shapley’s [5] solutions as particular cases. Thus, the improved multichoice

game has a wider sense of application.

1 Introduction

After the proposal of weighted Shapley value [2], Chih-Ru Hsiao and T.E.S. Raghaven [1]

raise an new idea of game. They allowed each player of a game to take various kinds of action,

and each kind of action presents the player’s work level. However, these players coordinate a job

in different work level, then by a characteristic function V the players get their payoffs. Question

is: how much is the value of each kind of work level for distinct player of a game V?

In our daily life, we cannot avoid the chance to cooperate with others in the work that can’t

be done alone. For the purpose to complete a job, players in the game like to cooperate with

somebody else. In Hsiao’s paper [1], he gave an example about operating a harvest car, harvester.

The harvester needs two people to operate. One person has to drive the car, and the other has to

put away the crop. Suppose the player 1 is a girl that she is not strong enough to put away the

crop, but she can drive. The other is a boy and he can not only drive but also put away the crop.

In this example, we are able to use another boy to replace the girl they still can complete the job

which is to harvest the crop.
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However, here comes the new problem, if we do our own work and we cannot replace the

position from each other. At the same time, we must cooperate to generate the profit. How should

we share the profit fairly?

2 Definitions And Notations

In this section we introduce some terminologies needed for description of subquent sections.

Let N = f1;2; : : : ;ng be the grand coalition of n players. We allow each player to have

0;1;2; : : : ;m level of actions, where level 0 is doing nothing, while player j takes action k which

means player j is doing some kind of work at level k. For notation convenience, we denote x j = k.

Let β = f0;1;2; : : : ;mg, and the action space of N is defined by βn
= f(x1;x2; : : : ;xn)jxi 2 β;8i 2

Ng, and let βn
nf~0g= β�. Then we call that~x=(x1;x2; : : : ;xn) is a action vector of a game V . Now,

given a coalition S � N, define b(S) = (x1;x2; : : : ;xn), where x j =

(
1 if j 2 S

0 otherwise
. Moreover,

the characteristic function of the cooperative game is defined by

V : βn
! R such that V (~0) = 0

Let wj(x j) =

(
λ jk if x j = k

0 if x j = 0
, for each j 2 N, be the given weight of each player j, then

it is reasonable to assume that λ j0 � λ j1 � �� � � λ jm, and represent them as a matrix below:

w(N)�

0
BBBB@

0 λ11 : : : λ1m

0 λ21 : : : λ2m
...

...
. . .

...

0 λn1 : : : λnm

1
CCCCA= Mn�(m+1)

A game with such w(N) is called an improved multichoice game. For this weight w(N), for

any~x 2 βn, we denote k~xkw =

n

∑
r=1

wr(xr) =

n

∑
r=1
xr=l

λrl , where l 2 β, and M j(~x) = fijxi 6= m; i 6= jg, for

each j 2 N.

Definition 2.1 We say the action vectors~x and~y is comparable in the order relation “�”, if x i � yi,

xi; yi 2 β for every i 2 N, means~x�~y.

Clearly, the relation “�” satisfies anti-symmetric and transitivity which means it is a partial

order relation.
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Definition 2.2 The intersection “\” of the action vectors~x and~y, denoted by~z, is defined by

~x\~y =~z = f(z1;z2; : : : ;zn)jzi = minfxi;yig;8i 2 Ng:

Definition 2.3 An action vector~x is called a carrier of V , if V (~x\~y) =V (~y), for all~y 2 β �. And

we call ~x� a minimal carrier of V, if ~x� �~x implies ~x� =~x, where~x is a carrier of V .

Definition 2.4 Player i is said to be a dummy player if V ((x1;x2; : : : ;xi = k; : : : ;xn))=V ((x1;x2; : : : ;

xi = 0; : : : ;xn)) for all~x 2 βn and for all k 2 β.

3 Axioms and Main Results

In this section, we want to find out the solution for the improved situation. The sets of all

improved multichoice games, denoted by G 0, can be identified by G0 �= R
β� . We consider the

solution φ : G0
! Mm�n as the following form:

φ(V ) =

0
BBBB@

φ11(V ) : : : φ1n(V )

φ21(V ) : : : φ2n(V )

...
. . .

...

φm1(V ) : : : φmn(V )

1
CCCCA

= (~φ1(V ); ~φ2(V ); : : : ; ~φn(V ))

and

~φi(V ) =

0
BBBB@

φ1i(V )

φ2i(V )

...

φmi(V )

1
CCCCA

The value φ would like to satisfy some axioms analogous to the axioms of Shapley value. We

list the axioms as follows:

Axiom 3.1 Let w(N) and~x be given. If V is of the form

V (~y) =

(
c > 0 if ~y�~x

0 if ~y 6�~x
;

then φx j ; j(V ) is proportional to w j(x j).
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Axiom 3.2 If ~x� is a carrier of V , then we have ∑x�j2
~x� φx�j ; j(V ) =V (~m).

That is the value φ is efficient.

Axiom 3.3 φ(V 1
+V 2

) = φ(V 1
)+φ(V 2

), where (V 1
+V 2

)(~x) =V 1
(~x)+V 2

(~x).

That means solution φ is additive.

Axiom 3.4 Given ~x0
2 βn if V (~x) = 0, whenever~x 6� ~x0, then for each i 2 N;φxi ;i(V ) = 0; for all

xi < x0
i .

That is, in the game V , it stipulates a minimal exertion from players, those who fail to meet this

minimal level cannot be rewarded. The following lemma is easily proved.

Lemma 3.5 There exists a unique minimal carrier of V .

Remark 3.6 Let H = f~hkj~hk 2 βn is a carrier of V , k = 1;2; : : : ; lg. Note that H is finite.

Choose~g= ~h1\~h2\�� �\~hl =\~hk2H
~hk. Then~g= f(g1;g2; : : : ;gn)jgi =minfhkij8k= 1;2; : : : ; lg,

for all i 2 Ng. Since~g is the intersection of all carriers of V ,~g is also a carrier of V . Thus for each
~h 2 H,~g�~h implies~g =~h. Now by the definition of minimal carrier,~g is a minimal carrier of V .

By this lemma, we know each game V 2 G 0 has at least one carrier of V . Sometimes ~m can be

selected as minimal carrier of a game V , if there is no other carrier in the game. A minimal carrier

tells us the minimal level of total payoff of the project and overwork of players cannot generate

more payoff then the total of the game.

For any~x 6=~0;~x = (x1;x2; : : : ;xn) 2 βn
= f0;1;2; : : : ;mgn we define

V~x(~y) =

(
1 if ~y �~x

0 if ~y 6�~x

then the basis generating G0 is given by the following theorem.

Theorem 3.7 If for all j 2 N; w j(x j) =

(
λ jk ; if x j = k

0 ; if x j = 0
are given, then there exists a basis

B = fV~xj~x 2 βn;~x 6=~0g generating G0.

Theorem 3.8 For any V 2 G0, with V = ∑
~x2β�

r~xV~x, φ(V ) satisfies Axioms 3.1� 3.4.

Next, we like to prove the solution of improved multichoice game.
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Theorem 3.9 Suppose w j(x j) =

(
λ jk if x j = k

0 if x j = 0
for all j 2 N are given, and φ : G0

!Mm�n

satisfies Axioms 3.1� 3.4. Then φ(V ) is given by

φi j(V ) =

i

∑
k=1

∑
x j=k
~x2β�

2
64 ∑

T�Mj(~x)

(�1)jT j
wj(x j)

k~xkw + ∑
r2T

[wr(xr +1)�wr(xr)]

3
75

� [V (~x)�V(~x�b(f jg))]

(3.1)

The result establishes the solution for the improved situation.

4 Specification and Example

In this section we discuss the relations between multichoice games and classical games. In

classical games, we know that each player has just two actions 0 and 1, no matter for the Shapley

value or the weighted Shapley value. In Hsiao’s paper, he has proved that the Shapley value is a

special case of his multichoice game G, but the weighted Shapley value is not. In the weighted

Shapley value each player takes the same action “1”, but their weights are different from each

other. But how is the improved multichoice game? The answer is positive that we can justify the

weighted Shapley value is a special case of improved multichoice game G 0. Next, we offer the

proof.

Before giving the formal proof, we prove the following lemma.

Lemma 4.1

(φw) j(v) = ∑
j2S�N

2
64 ∑

T�NnS

(�1)jT j
λ j

∑
i2S[T

λi

3
75� [v(S)� v(Snf jg)]

Suppose there is a game v, and weight system w = (λ;Σ). Then the players in the game v can

be seen as the players in the improved multichoice game V which has only two actions 0 and 1.

Then we define the characteristic function of V as:

V ((x1;x2; : : : ;xn)) = v(S)

where for each i 2 N, xi = 1 if i 2 S, and xi = 0 otherwise. Then we can prove the following

theorem.

Theorem 4.2 If we define the weight function wi(xi)=

(
λi if xi = 1

0 if xi = 0
, then φ1; j(V )= (φw) j(v),

for every i 2 N, that is, we can express the weighted Shapley of v as the form of Shapley value for

multichoice game V .
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Theorem 4.2 tells us that each classical game can be represented in the form of improved

multichoice game which means Γ� G 0.

Here, we present an example to figure out the specified property of the Improved Multichoice

Games.

Example 4.3 A factory has three different production lines, a, b and c, and each of them produces

different certain commodities. All of the production lines have three production levels. This fac-

tory makes revenue by the cooperative of the production lines. The following are their production

levels.

a. The production lines a:

0: The line does not produce.

1: It produces rubber and bicycle tires.

2: It produces all kinds of tire of car.

b. The production lines b:

0: The line does not produce.

1: It produces the spare parts of bicycle or all kinds of spare parts of engine.

2: It produce all kinds of spare parts of car.

c. The production lines c:

0: The line does not produce.

1: It constitutes and produces bicycles.

2: It constitutes all kinds of cars.

And the revenue function is

V ((xa;xb;xc)) = 2xa + xb +5xc +4

�
xaxc + xbxc

2

�
; Where b c is Gauss function.

Now the owner wants to analyze each production levels. We can draw the table for the revenue.
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V ((xa;xb;xc)) xa

xb xc 0 1 2

0 0 2 4

0 1 5 7 13

2 10 16 22

0 1 3 5

1 1 6 12 14

2 15 21 27

0 2 4 6

2 1 11 13 19

2 20 26 32

The factory gives its weight:

w(N) �

0
B@

0 λ11 λ12

0 λ21 λ22

0 λ31 λ31

1
CA=

0
B@

0 1 3

0 2 4

0 4 5

1
CA

Next, we compute φ(V ):

φ(V ) =

 
φ11(V ) φ21(V ) φ13(V )

φ21(V ) φ22(V ) φ23(V )

!
=

 
2 1793

2520 2 62
315 6 425

693

7 841
6930 6 296

385 17 529
1386

!

Finally, we check the efficiency of V :

φ21(V )+φ22(V )+φ23(V ) = 7
841

6930
+6

296
385

+17
529
1386

= 32 =V (N)

This example demonstrates the cooperation among different kinds of work, and we apply the

improved multichoice game to find the solution. Obviously, Hsiao’s multichoice game cannot be

applied in the Example 4, and we have posed another point of view to go with multichoice game.

5 Conclusion

In this thesis, we have established the value for improved multichoice game. It has the property

that, except to be a dummy player, each player can decide which level of the game he wants to

join. It, therefore, has a wider sense of application.

However, the objective is how to share the profit among these players of the coalition. Fortu-

nately, we have found the approach to determine each player’s value of the game.
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By the results found, we are able to decide what kind or level of action will be more appropri-

ate, or more effective. Our aim is that we like to find the optimal solution. By the way, we pose

the game certain constraints, for instance, see Example, where the maximum revenue may not be

the maximum profit for the game. Thus it seems a good direction to us to do further research in

the future.

Appendix

A.1 Proof of Theorem 3.7

Proof: By Lemma 3.5,~x is a carrier of V~x, and by Axiom 3.1 we have

φx j ; j(V~x) =
wj(x j)

∑
i2N

wi(xi)
=

λ jk

∑
i2N
xi=l

λil
; for each j 2 N;

where k; l = 0;1; : : : ;m. Furthermore, by Axiom 3.2, we have

∑
x j2~x

φx j ; j(V~x) =V~x(~m) = 1

Let ~x1 = (x1;x2; : : : ;x j +1;x j+1; : : : ;xn). Clearly, ~x1 is also a carrier of V~x and we have

∑
i 6= j

x j2~x

φxi ;i(V~x)+φx j+1; j(V~x) =V~x(~m) = ∑
xi2~x

φxi ;i(V~x)

Hence φx j+1; j(V~x) = φx j ; j(V~x). Similarly, φl; j(V~x) = φx j ; j(V~x); for all l � x j; for each j 2 N.

By Axiom 3.4, φl; j(V~x) = o; for all l < x j, for each j 2 N. Thus we have

~φ j(V~x) =

0
BBBBBBBBBBBBB@

0
...

0
λ jk

∑i2N λil
...

λ jk

∑i2N λil

1
CCCCCCCCCCCCCA

1st

x jth

mth
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Denote

~φ j(r �V~x) = r~φ j(V~x) = r

0
BBBBBBBBBBBBB@

0
...

0
λ jk

∑i2N λil
...

λ jk

∑i2N λil

1
CCCCCCCCCCCCCA

As we know G0 �= R
(m+1)n�1, we need show that B = fV~xj~x 2 βn;~x 6=~0g is a basis for G0.

Assume there exists some r~x 6= 0; and let for any~y 2 βn; ∑
~x2β�

r~xV~x(~y)� 0. Then we observe the

following cases:

1. For~y >~x) r~x = 0

2. For~y <~x)V~x(~y) = 0

3. For~y 6>~x)~y =~x or~y 6�~x.

(a) If~y 6�~x; then V~x(~y) = 0:

(b) If~y =~x; then ∑
~x2β�

r~xV~x(~y) = r~xV~x(~x) = r~x = 0 This leads to a contradiction.

Hence for all~x 2 β�, fV~xg is linearly independent. Thus for every V 2G 0, we can represent the

game V as V = ∑
~x2β�

r~xV~x. And, by Axiom 3.3,

φ(V ) = φ( ∑
~x2β�

r~xV~x) = ∑
~x2β�

r~xφ(V~x)

2

A.2 Proof of Theorem 3.8

Proof: Let ~x� 2 β� be the minimal carrier of V , for every V 2 G 0, define a linear transformation

h : G0
! G0 by h(V )(~y) =V (~y\ ~x�). Then for all~y 2 β�

h(V~x)(~y) =V~x(~y\~x�) =

(
1 ; if ~y\ ~x� �~x

0 ; if ~y\ ~x� 6�~x

Consider the following cases:
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1. When ~x� �~x, we have~y\ ~x� �~x if and only if~y�~x.

2. When ~x� 6�~x, we have~y\ ~x� 6�~x.

Thus h(V~x) =

(
V~x ; if ~x� �~x

0 ; if ~x� 6�~x
. Then for each V~x 2 B, we have

∑
x�j2

~x�
φx�j ; j(V~x) = ∑

x j2~x

φx j ; j(V~x) = ∑
x j2~x

wj(x j)

∑
i2N

wi(xi)
=V~x(~m):

This satisfies Axiom 3.1. Moreover h is linear, and the range of h , R(h), is generated by

B0
= fV~xj~x� ~x�g

∑
x�j2

~x�

φx�j ; j(V~x +V~y) = ∑
x�j2

~x�

φx�j ; j(h(V~x +V~y)) = h(V~x +V~y)(~m) = h(V~x)(~m)+h(V~y)(~m)

= ∑
x�j2

~x�

φx�j ; j(V~x)+ ∑
x�j2

~x�

φx�j ; j(V~y) = ∑
x�j2

~x�

h
φx�j ; j(V~x)+φx�j ; j(V~y)

i

This satisfies Axiom 3.3. For every given V 2 G 0; ~x� a is carrier of V .

∑
x�j2

~x�
φx j ; j(V ) = ∑

x�j2~x

φx j ; j( ∑
~x2β�

r~xV~x) = ∑
x�j2

~x�
∑

~x2β�
r~xφx j ; j(V~x)

= ∑
~x2β�

r~x

0
@ ∑

x�j2
~x�

φx j ; j(V~x)

1
A= ∑

~x2β�
r~xV~x(~m) =V (~m)

This satisfies Axiom 3.2. Next, let V (~y) = 0, for any given V 2 G, while~y 6� ~x�, ~x� is a carrier of

V . Let V = ∑
~x2β�

r~xV~x, we consider the following conditions:

1. ~x� ~x� )~y 6�~x )V~x(~y) = 0

2. ~x� >~x and~y �~x) r~x = 0

3. ~x 6� ~x� and~x �~y)V~x(~y) = 0

4. ~x 6� ~x� and~x 6�~y)~x 6�~y and~y 6�~x, or~x =~y.

(a) If~x 6�~y and~y 6�~x; then V~x = 0.

(b) If~x =~y then V~x(~y) = 1.

Hence V (~y) = ∑
~x2β�

r~xV~x(~y) = r~yV~y(~y) = r~y = 0; for any~y 6�~x.

Then we conclude φy j ; j(V ) = 0; for all j 2 N. This satisfies Axiom 3.4. 2
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A.3 Proof of Theorem 3.9

Proof: The value function of Theorem 3.8 was characterized in the proof as being the unique

linear map φ : G0
! Mm�n such that

~φ j(V~x) =

0
BBBBBBBBBBBBB@

0
...

0
λ jk

∑i2N λil
...

λ jk

∑i2N λil

1
CCCCCCCCCCCCCA

1st

x jth

mth

; where V~x(~y) =

(
1 ; if ~y �~x

0 ; if ~y 6�~x
: (A.1)

The formula (3.1) is obviously linear in V . Since φ satisfies the Axioms 3.1� 3.4 , to show

(3.1) is sufficient to show (A.1). Given~x 2 β� and j 2 N, we need check

φx j ; j(V~x) = ∑
y j=x j
~y2β�

2
64 ∑

T�Mj(~x)

(�1)jT j
wj(x j)

k~xkw + ∑
r2T

[wr(xr +1)�wr(xr)]

3
75

� [V~x(~y)�V~x(~y�b(f jg))]

(A.2)

First, we consider for every~y 2 β�:

1. For all~y 6�~x )V~x(~y) =V~x(~y�b(f jg)) = 0.

Then for every y j;y j �1 < x j, we have φy j ; j(V~x) = 0; for all y j < x j:

2. For all~y �~x

(a) When V~x(~y)�V~x(~y�b(f jg)) = 0, then V~x(~y) =V~x(~y�b(f jg)) = 1) y j > x j

(b) When V~x(~y)�V~x(~y�b(f jg)) = 1) y j = x j

Thus, when V~x(~y)�V~x(~y�b(f jg)) = 1, it remains to show that the formula (A.2) reduce to

φx j ; j(V~x) =
wj(x j)

k~xkw
; for each j 2 N (A.3)

Let

Cj(~y) = ∑
T�Mj(~x)

2
64(�1)jT j

wj(x j)

k~xkw + ∑
r2T

[wr(xr +1)�wr(xr)]

3
75 (A.4)
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then (A.2) can be represented as

φx j ; j(V~x) = ∑
y j=x j
~y�~x

Cj(~y) �1 = ∑
y j=x j
~y�~x

Cj(~y) (A.5)

Given any j 2 N; assume M j(~x) = S. By the inclusion-exclusion principle we have

∑
y j=x j
~y�~x

Cj(~y) = ∑
y j=x j
~y=~x

Cj(~y)+ ∑
jT j=1
T�S

(�1)jT j+1 ∑
y j=x j

~y�~x+b(T )

Cj(~y)+ � � �+ ∑
jT j=jSj

(�1)jT j+1 ∑
y j=x j

~y�~x+b(T )

Cj(~y)

For the case~x+b(T ) =~y, we have

∑
y j=x j

~y�~x+b(T )

Cj(~y) =
wj(x j)

k~x+b(T)kw
=

wj(x j)

k~xkw + ∑
r2T

[wr(xr +1)�wr(xr)]
(A.6)

However,

∑
y j=x j
~y�~x

Cj(~y) = ∑
y j=x j
~y=~x

Cj(~y)+ ∑
T�S
T 6= /0

(�1)jT j+1 wj(x j)

k~xkw + ∑
r2T

[wr(xr +1)�wr(xr)]

= Cj(~x)+ ∑
T�Mj(~x)

T 6= /0

(�1)jT j+1 wj(x j)

k~xkw + ∑
r2T

[wr(xr +1)�wr(xr)]

= ∑
T�Mj(~x)

2
64(�1)jT j

wj(x j)

k~xkw + ∑
r2T

[wr(xr +1)�wr(xr)]

3
75

+ ∑
T�Mj(~x)

T 6= /0

2
64(�1)jT j+1 wj(x j)

k~xkw + ∑
r2T

[wr(xr +1)�wr(xr)]

3
75

=
wj(x j)

k~xkw
= φx j ; j(V~x)

2
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A.4 Proof of Lemma 4.1

Proof: Let S;T � N and jT j= t; jSj= s; jNj= n.

∑
j2S�N

2
64 ∑

T�NnS

(�1)t λ j

∑
i2S[T

λi

3
75� [v(S)�V(Snf jg)]

= ∑
j2S[T�N

λ j

∑
i2S[T

λi

"
∑

H�S[T

(�1)s+t�hv(H)

#
= ∑

j2R�N

λ j

∑
i2R

λi

"
∑

H�R
(�1)r�hv(H)

#

= ∑
j2R�N

(φw) j(uR) �αR = (φw) j( ∑
R�N

αRuR) = (φw) j(v)

2

A.5 Proof of Theorem 4.2

Proof: Since each player j 2 N just has only two actions , x j = 0, 1. Define

V (~x) = v(S); for all~x = (x1;x2; : : : ;xn) 2 βn
= f0;1gn; where S = fijxi = 1;8i 2 Ng:

Then

φ0; j(V ) = 0; clearly:

φ1; j(V ) =

1

∑
k=1

∑
x j=k
~x2βn

2
64 ∑

T�Mj(~x)

(�1)jT j
wj(x j)

k~xkw + ∑
r2T

[wr(xr +1)�wr(xr)]

3
75� [V (~x)�V(~x�bf jg)]

Thus we represent the formula as following :

φ1; j(V ) = ∑
x j=1
~x2βn

2
64 ∑

T�Mj(x)

(�1)jT j
wj(x j)

jj~xjjw + ∑
r2T

[wr(xr +1)�wr(xr)]

3
75� [V (~x)�V(~x�bf jg)]

= ∑
j2S

S�N

2
664 ∑

j=2T
T�NnS

(�1)jT j
λ j

∑
i2S[T

λi

3
775 [v(S)� v(Snf jg)]

Now we prove φ1; j(V ) = (φw) j(v) by induction. Let S, T � N ,s = jSj, t = jT j, n = jNj.

(1) For n = 1, N = f1g. φ1;1(V ) =V (1) = v(f1g) = (φw)1(v)
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(2) For n = 2, N = fi; jg.

φ1; j(V ) = ∑
x j=1
~x2βn

2
64 ∑

T�Mj(x)

(�1)jT j
wj(x j)

jj~xjjw + ∑
r2T

[wr(xr +1)�wr(xr)]

3
75� [V (~x)�V(~x�bf jg)]

= ∑
j2S

S�N

2
664 ∑

j=2T
T�NnS

(�1)jT j
λ j

∑
i2S

λi + ∑
i2T

λi

3
775� [v(S)� v(Snf jg)]

= ∑
j2S

S�N

2
664 ∑

j=2T
T�NnS

(�1)jT j
λ j

∑
i2S[T

λi

3
775� [v(S)� v(Snf jg)]

=

�
(�1)0 λ j

λ j
+(�1)1 λ j

λ j +λi

�
� [v( j)� v( /0)]+

�
λ j

λ j +λi

�
� [v(fi; jg)� v(fig)]

= [v(fi; jg)� v(f jg)� v(fig)+ v( /0)]
λ j

λ j +λi
+[v(f jg)� v( /0)]

= αfi; jg(φw) j(ufi; jg)+αf jg(φw) j(uf jg)

= (φw) j( ∑
S�N

αSuS) = (φw) j(v)

(3) For n = k, N = f1;2; : : : ;kg= K. By Lemma 4.1

φ1; j(V ) = ∑
j2S

S�K

2
664 ∑

j=2T
T�KnS

(�1)t λ j

∑
i2S

λi + ∑
i2T

λi

3
775� [v(S)� v(Snf jg)]

= ∑
S�K

αS(φw) j(uS) = (φw) j( ∑
S�K

αSuS) = (φw) j(v)
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(4) For n = k+1, N = f1;2; : : : ;kg[fk+1g= K [fk+1g.

φ1; j(V ) = ∑
j2S

S�Kfk+1g

2
664 ∑

j=2T
T�K[fk+1gnS

(�1)t λ j

∑
i2S[T

λi

3
775� [v(S)� v(Snf jg)]

= ∑
j2S

S�K

2
664 ∑

j=2T
T�K[fk+1gnS

(�1)t λ j

∑
i2S[T

λi

3
775� [v(S)� v(Snf jg)]

+ ∑
j2S

S[fk+1g�K[fk+1g

2
664 ∑

j=2T
T�K[fk+1gnS[fk+1g

(�1)t λ j

∑
i2S[T[fk+1g

λi

3
775

� [v(S[fk+1g)� v(Sfk+1gnf jg)]

For the notation convenience we denote S[fk+1g�K[fk+1g� S�K, where we still can tell

out the form
λ j

∑
i2S[T[fk+1g

λi
.

φ1; j(V ) = ∑
j2S

S�K

2
664 ∑

j=2T
T�KnS

(�1)t λ j

∑
i2S[T

λi
+ ∑

j=2T
T�KnS

(�1)t+1 λ j

∑
i2S[T[fk+1g

λi

3
775� [v(S)� v(Snf jg)]

+ ∑
j2S

S�K

2
664 ∑

j=2T
T�KnS

(�1)t λ j

∑
i2S[T[fk+1g

λi

3
775� [v(S[fk+1g)� v(S[fk+1gnf jg)]

= ∑
j2S

S�K

2
664 ∑

j=2T
T�KnS

(�1)t λ j

∑
i2S[T

λi
[v(S)� v(Snf jg)]

3
775

+ ∑
j2T

S�K

2
664 ∑

j=2T
T�KnS

(�1)t+1 λ j

∑
i2S[T[fk+1g

λi
[v(S)� v(Snf jg)]

3
775

+ ∑
j2S

S�K

2
664 ∑

j=2T
T�KnS

(�1)t λ j

∑
i2S[T[fk+1g

λi
� [v(S[fk+1g)� v(S[fk+1gnf jg)]

3
775
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Hence we get the Shapley value for multichoice game:

φ1; j(V ) = ∑
S�K

αS(φw) j(us)+ ∑
j2S

S[fk+1g�K[fk+1g

2
664 ∑

j=2T
T�KnS

(�1)t+1 λ j

∑
i2S[T[fk+1g

λi

3
775 [v(S)� v(Snf jg)]

+ ∑
j2S

S[fk+1g�K[fk+1g

2
664 ∑

j=2T
T�KnS

(�1)t λ j

∑
i2S[T[fk+1g

λi

3
775 [v(S[fk+1g)� v(S[fk+1gnf jg)]

But here we still denote S[fk+1g� K [fk+1g� S � K for convenience.

φ1; j(V ) = ∑
S�K

αS(φw) j(us)

+ ∑
j2S

S�K

2
664 ∑

j=2T
T�KnS

�
(�1)tv(S[fk+1g)+(�1)t+1v(S[fk+1gnf jg)

+ (�1)t+1v(S)+(�1)t+2v(Snf jg)
� λ j

∑
i2S[T[fk+1g

λi

3
775

(A.7)

By Lemma 4.1 we can write (A.7) as follow:

= ∑
S�K

αS(φw) j(us)+ ∑
S[fk+1g�K[fk+1g

αS[fk+1g(φw) j(uS[fk+1g)

= ∑
S�K[fk+1g

αS(φw) j(uS)

2
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多重選擇局的夏普萊值 
 

沈正中    吳英格* 

摘    要 

賽局理論有許多方面的應用，本文所討論的多重選擇局的加權夏普萊值，則專為討論合作局的

情況。 

當一群玩家參與一個賽局時，若其中有由二人以上的結盟出現，常會帶來超出該盟中成員原本

所擁有的利益。但在帶來額外利益的同時，該同盟應如何去合理與適當地分配這些利益，從而決定

盟隊成員在賽局中的價值，則是本文的論點所在。 

古典的賽局理論中，合作關係僅止於玩家參不參與盟隊，並未給予玩家參與程度上的區別。多

重選擇賽局則給予玩家有選擇參與的程度。但在這同時，它也同樣涉及如何決定這些玩家所採取的

參與程度在賽局中的價值問題。本文最主要的理論即是提供其分配的方法，來決定每一個玩家的每

一種參與程度在賽局中的價值。並由於方法的改良更使得 Hsiao[1]、Kalai[2] 與 Shapley[5]的方法，

成為本法中的特殊情況。 
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