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Abstract

Multichoice game is constructed by Hsiao and Raghaven [1]. They use action vectors to replace setsto
present the situation of cooperation of playersin agame, and find the solution for multichoice game. Thus,
we can extend a classical game into a multichoice game whose players have many kinds of work levels.
Their weight system shows that each distinct player takes the same work level to mean the same behavior.
But this cannot be applied in the games when different player has the variant job. Improved multichoice
games offer anew weight system for multichoice games allowing each distinct player to have m + 1 kinds
of work levels without restricting the behavior of each work level. Meanwhile, we are also interested in
the solution of improved multichoice games and we can reduce the solution found to Hsiao and Raghaven
[1], Kalai and Samet’s[2], and Shapley’s [5] solutions as particular cases. Thus, the improved multichoice
game has awider sense of application.

1 Introduction

After the proposal of weighted Shapley value [2], Chih-Ru Hsiao and T.E.S. Raghaven [1]
raise an new idea of game. They alowed each player of a game to take various kinds of action,
and each kind of action presents the player’s work level. However, these players coordinate ajob
in different work level, then by a characteristic functionV the players get their payoffs. Question
is: how much is the value of each kind of work level for distinct player of agameV?

In our daily life, we cannot avoid the chance to cooperate with others in the work that can’t
be done alone. For the purpose to complete a job, players in the game like to cooperate with
somebody else. In Hsiao's paper [1], he gave an example about operating a harvest car, harvester.
The harvester needs two people to operate. One person has to drive the car, and the other has to
put away the crop. Suppose the player 1 is a girl that she is not strong enough to put away the
crop, but she can drive. The other is a boy and he can not only drive but also put away the crop.
In this example, we are able to use another boy to replace the girl they still can complete the job
which isto harvest the crop.

*Department of Mathematics, Tunghai University, Taichung, 407, TAIWAN



However, here comes the new problem, if we do our own work and we cannot replace the
position from each other. At the same time, we must cooperate to generate the profit. How should
we share the profit fairly?

2 Definitions And Notations

In this section we introduce some terminol ogies needed for description of subgquent sections.
Let N = {1,2,...,n} be the grand codlition of n players. We alow each player to have
0,1,2,...,m level of actions, where level 0 is doing nothing, while player j takes action k which
means player j is doing some kind of work at level k. For notation convenience, we denotex j = k.
Let = {0,1,2,...,m}, and the action space of N is defined by B" = {(x1,X2,...,Xn)|Xi € B,Vi €
N1, andlet "\ {0} = B*. Thenwecall that X = (x1,Xa, ..., X,) isaaction vector of agameV . Now,
1 if jes

. Moreover,
0 otherwise

given acoalition S C N, define b(S) = (X1,X2,...,%n), wherexj =

the characteristic function of the cooperative game is defined by
V:B"—> R suchthatV(0)=0

7\ajk if Xj= k

0 if x;=0
it isreasonableto assumethat Ljo < Aj1 < --- < Ajm, and represent them as amatrix below:

Letwj(xj) = , for each j € N, be the given weight of each player j, then

0 ;\vll eee 7\4]_m
0 }\.21 e 7\.2m

wiN)y=1| . . . = Mnx(m+1)
O }\.nl e 7\.nm

A game with such w(N) is called an improved multichoice game. For this weight w(N), for
n n

any X € B", wedenote ||X|lw = Y, Wr(xr) = D, A, wherel € B, and Mj(X) = {i[xi # m,i # j}, for
r=1 r=1
Xr=I

each j € N.

Definition 2.1 We say the action vectors X and ¥ is comparablein the order relation *“>", if x; > i,
Xi, Vi € P forevery i € N, meansX > V.

Clearly, the relation “>" satisfies anti-symmetric and transitivity which meansiit is a partial
order relation.



Definition 2.2 The intersection “N”” of the action vectors X and Y, denoted by Z, is defined by
Xny: 7= {(217227 v ;Zn)|zi = min{Xi,yi},Vi € N}

Definition 2.3 An action vector X is called a carrier of V, if V(XNy) =V (¥), for all y € §*. And
we call x* a minimal carrier of V, if x* > X implies x* = X, where X is a carrier of V.

Definition 2.4 Player i is said to be a dummy player if V ((x1,X2,...,Xi =K, ..., Xn)) =V ((X1,X2, . . .,
xi =0,...,xn)) for all X € B" and for all k € B.

3 Axiomsand Main Results

In this section, we want to find out the solution for the improved situation. The sets of all
improved multichoice games, denoted by G’, can be identified by G’ =~ RPF". We consider the
solution ¢ : G — My« asthe following form:

011(V) ... dm(V)
021(V) ... dan(V)

ov) = | L0
¢m1.(V) q)mn.(V)
= (01(V),02(V),...,6n(V))
and
01i(V)
v = | Y
¢mi.(V)

The value ¢ would like to satisfy some axioms analogous to the axioms of Shapley value. We
list the axioms as follows:

Axiom 3.1 Let w(N) and X be given. If V is of the form

fe>o0 if y>x
V(y)_{o if 2%’

then ¢y, j(V) is proportional to wj(xj).



Axiom 3.2 If x*is a carrier of V , then we have Zx]fexjﬂ ¢XT’J'(V) =V(m).

That isthe value ¢ is efficient.

Axiom 3.3 ¢(V1+V?2) = (V1) +o(V2), where (VI4+V?)(X) =V1(X) +V2(X).
That means solution ¢ is additive.

Axiom 3.4 Given X0 € B" if V(X) = 0, whenever X # X0, then for each i € N, dx,i(V) =0, for all
xi < x0.

That is, in the gameV, it stipulates a minimal exertion from players, those who fail to meet this
minimal level cannot be rewarded. The following lemmais easily proved.

Lemma 3.5 There exists a unique minimal carrier of V.
Remark 3.6 LetH = {h|hx € B isacarrierof V,k=1,2,...,1}. Notethat H isfinite.

Choosegd = h1inhaN---Nh :mﬁkeHh”k. Theng={(91,92,-.-,9n)|gi = min{hi|Vk=1,2,...,1},
foral i e N}. Sinced istheintersection of all carriersof V, g isalso acarrier of V. Thusfor each
heH,d>himpliesg = h. Now by the definition of minimal carrier, g isaminimal carrier of V.

By thislemma, we know each gameV € G’ has at least one carrier of V. Sometimes m can be
selected as minimal carrier of agameV, if thereis no other carrier in the game. A minimal carrier
tells us the minimal level of total payoff of the project and overwork of players cannot generate
more payoff then the total of the game.

For any X # 0,X = (X1,X2,...,%) € B" = {0,1,2,...,m}" we define

1 if y>x%

VY(V):{ 0 if V¥X

then the basis generating G’ is given by the following theorem.

Ajk if xj =k

. are given, then there exists a basis
0 ,if x5=0

Theorem 3.7 Ifforall j € N, wj(xj) = {

B = {Vg|X € B",X # O} generating G'.

Theorem 3.8 ForanyV € G, withV = ) rVg, ¢(V) satisfies Axioms 3.1~ 3.4.
Xep*

Next, we like to prove the solution of improved multichoice game.



Ajk if xj=k
0 if xj=0
satisfies Axioms 3.1~ 3.4. Then ¢(V) is given by

Theorem 3.9 Suppose wj(xj) = forall j € N are given, and ¢ : G’ — Mpxn

) _ i T wi(xj)
oij(V) kg‘lxék Tg%(i)( 1 [IXl|w + 2{ [Wr (Xr 4+ 1) — Wr(Xr)] (3.1
e re

x VX -VE-b{j})]

The result establishes the solution for the improved situation.

4 Specification and Example

In this section we discuss the relations between multichoice games and classical games. In
classical games, we know that each player has just two actions 0 and 1, no matter for the Shapley
value or the weighted Shapley value. In Hsiao's paper, he has proved that the Shapley valueis a
special case of his multichoice game G, but the weighted Shapley value is not. In the weighted
Shapley value each player takes the same action “1”, but their weights are different from each
other. But how is the improved multichoice game? The answer is positive that we can justify the
weighted Shapley value is a specia case of improved multichoice game G’. Next, we offer the
proof.

Before giving the formal proof, we prove the following lemma.

Lemma4.l
@i0= 3 | T DI | <) v\ ()
JESCN | TCN\S S I

Suppose thereis a game v, and weight system w = (A,X). Then the playersin the gamev can
be seen as the players in the improved multichoice gameV which has only two actions 0 and 1.
Then we define the characteristic function of V as:

V ((X1,%2,-,%Xn)) = V(S)
where for eachi € N, xji = 1if i € S, and x; = 0 otherwise. Then we can prove the following

theorem.

Aioif xi=1
o it o et = (i),

for every i € N, that is, we can express the weighted Shapley of v as the form of Shapley value for
multichoice game V.

Theorem 4.2 If we define the weight function w;(x;) =



Theorem 4.2 tells us that each classical game can be represented in the form of improved
multichoice game which meansT" C G’.

Here, we present an example to figure out the specified property of the Improved Multichoice
Games.

Example4.3 A factory hasthree different productionlines, a, b and ¢, and each of them produces
different certain commodities. All of the production lines have three production levels. This fac-
tory makes revenue by the cooperative of the production lines. The following are their production
levels.

a. Theproductionlinesa:

0: Theline does not produce.
1: It producesrubber and bicycletires.

2: It producesall kinds of tire of car.
b. Theproduction linesb:

0: Theline does not produce.
1: It produces the spare parts of bicycle or al kinds of spare parts of engine.

2: It produce all kinds of spare parts of car.
¢. Theproductionlinesc:

0: Theline does not produce.
1: It constitutes and produces bicycles.

2: It constitutes all kinds of cars.

And the revenue functionis

XaXc + XpXc

V((xa,xb,xc)):2xa+xb+5xc+4{ 5

J , Where | | is Gauss function.

Now the owner wants to analyze each production levels. We can draw thetable for the revenue.



V ((Xa,Xp,Xc)) Xa

Xb Xc o 1| 2
0 0| 2| 4

0 1 5| 71|13
2 10 | 16 | 22
0 1| 3| 5

1 1 6|12 |14
2 15|21 |27
0 2| 4| 6

2 1 11 | 13| 19
2 20 | 26 | 32

Thefactory givesits weight:

0 A A 01 3
W( N ) = 0 7\,21 7\,22 = 0 2 4
0 As1 Am;m 0 4 5

Next, we compute ¢(V ):

o(V) = ¢11(V)  021(V) ¢13(V) _ 2U% 282 a5
d21(V)  ¢22(V) ¢23(V) 781 626 1752

Finally, we check the efficiency of V:

841 296 __529
021(V) +022(V) +023(V) = 725 + 622 + 17722 = 32 =V(N)

This example demonstrates the cooperation among different kinds of work, and we apply the
improved multichoice game to find the solution. Obvioudly, Hsiao's multichoice game cannot be
applied in the Example 4, and we have posed ancther point of view to go with multichoice game.

5 Conclusion

Inthisthesis, we have established the value for improved multichoice game. It hasthe property
that, except to be a dummy player, each player can decide which level of the game he wants to
join. It, therefore, has awider sense of application.

However, the objective is how to share the profit anong these players of the coalition. Fortu-
nately, we have found the approach to determine each player’s value of the game.



By the results found, we are able to decide what kind or level of action will be more appropri-
ate, or more effective. Our aim is that we like to find the optimal solution. By the way, we pose
the game certain constraints, for instance, see Example, where the maximum revenue may not be
the maximum profit for the game. Thus it seems a good direction to us to do further research in
the future.

Appendix

A.1 Proof of Theorem 3.7

Proof: By Lemma3.5, Xisacarrier of Vg, and by Axiom 3.1 we have

WJ(XJ) Ak
= = for each N,
¢XJ,J 2W| an or jE
ieN ieN

xj=lI

wherek,l =0,1,...,m. Furthermore, by Axiom 3.2, we have

3 0y, (Vx) = V(i) = 1

Xj€X

Let X1 = (X1,X2,...,Xj + 1,Xj+1,...,Xn). Clearly, X1 isalso acarrier of Vg and we have

z ¢X|7 VX + ¢Xj+l j (VX z ¢X|7 VX
i#] Xj €X
XjexX

Henceq)xjH,j(Vg) = ¢xj,j(V¥)- Similarly, ¢ (Vx) = q)xj,j(vi), foral | > xj, foreach j € N.
By Axiom 3.4, ¢ j(Vx) = o, for al | < x;j, for each j € N. Thuswe have

0 1st
0
7\‘.
0j(Vx) = Ik
Yien Al xjth
kjk

Yien Al mth



Denote

0
¢j(r-Vg) =rdj(Vx) =r Ak
Yien Al

Ak
Yien Al

Asweknow G’ = RM+D" -1 we need show that B = {Vg|X € B",X # 0} isabasisfor G'.

Assume there exists somery # 0, and let for any y € ", 2 rzVyz(¥) = 0. Then we observe the
Xep*

following cases:
1 Fory>X=ry=0
2. Fory<X=Vg(y)=0
3. Fory(X=y=Xory2X.

(@ 1f ¥ # X, thenVg(y) = O.

(b) If ¥ =X, then 2 ryVz(¥) = rgVy(X) = ry = 0 Thisleads to a contradiction.
Xep*

Hencefor al X € B*, {Vx} islinearly independent. Thusfor everyV € G’, we can represent the

gameV asV = Y ryVg. And, by Axiom 3.3,
Xep*

o(V) =0( Y reVy) = 3 1z0(Vg)

Xep* Xep*

A.2 Proof of Theorem 3.8

Proof: Let x* € B* be the minimal carrier of V, for every V € G’, define alinear transformation
h:G' — G' by h(V)(y) =V (ynx*). Thenfor al y € B*

1 ,if ynx*>x

h(Vx)(V)ZVx(Vﬂi*)Z{ 0 if ynit £%

Consider the following cases:
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1. When x* > %, wehaveynx* > Xif andonly if y > X.
2. When x* # %, we have yNx* # X.

Vg Lif XF>%

o . Then for each Vg € B, we have
0 ,if x*%X

Thush(Vy) = {

wj(x;)
O j(VR) = X 0x; j (Vo) = Y, = = Ve(M).
xg’?‘ i X%Y : szeiizwi(xi)
] ieN
This satisfies Axiom 3.1. Moreover h is linear, and the range of h , R(h), is generated by
B' = {Vx|x < x*}

zﬂ O j(Va+Vy) = zﬂ Ox:,j(N(Vx +Vy)) = h(Vg+Vy) (M) = h(Vg) (M) + h(Vy)(M)
xfex* xfex*
= Y Ox:,j(Vx) + Y Ox: i (Vy) = Y [¢x7,j (Va) +0x: 5 (Vy)
X ext X*ext xfex“

] ]

This satisfies Axiom 3.3. For every givenV € G’,x* ais carrier of V.

z ¢Xj,j(v) = Z ¢Xj,j( z I';/Vg) = z z fx'¢xj,j(V>'<)

xjext XjEX Xepr X; exe Xep*

= 2% ( > ¢x,-7j(V>'<)) = > V(M) =V (m)

Xef* Xj ext Xep*

This satisfies Axiom 3.2. Next, let V (y) = 0, for any givenV € G, whiley # x*, x* isacarrier of

V. LetV = Z ryVy, we consider the following conditions:
Xep*

LX>X=2728=>Vg(y) =0
2. X >Xandy>xX=rg=0
3. X £ x andX> ¥ = Vg(§) =0
4 REX andR R Y= R EVandy £ X, orX=7.
(@ IfX2¥andy 2 X, thenVy =0.
(b) 1f X = ¥ thenVg(y) = 1.
HenceV (¥) = Y, reVx(¥) = ryVy(¥) = ry = 0, forany ¥ # X.

Xep*
Then we conclude ¢y; (V) = 0, forall j € N. This satisfies Axiom 3.4. |
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A.3 Proof of Theorem 3.9

Proof: The value function of Theorem 3.8 was characterized in the proof as being the unique
linear map ¢ : G’ — Mmxn such that

0 1st
0 1 if y>¥
— }\' 7| -
0j(Vx) = ik , whereVg(y) = { . : (A1)
) Sienda | xith 0 if Y#X
Kjk
Yien Ail mth

The formula (3.1) is obviously linear in V. Since ¢ satisfies the Axioms 3.1~ 3.4, to show
(3.1) issufficient to show (A.1). GivenX € B* and j € N, we need check

Wi (V = —plm Wi )
q) JvJ( Y) );_’J;BX*J Tg%(g)( ) ||X||W+ z_l_[wr(Xr_'_l)_Wr(xr)] (AZ)

x Ve(¥) = V(Y- b({i}))]
First, we consider for every ¥ € B*:

1 Foral y 2 X =Vx(y) =Vz(Y—Db({j})) =0.
Thenfor every yj,yj — 1 < xj, we have ¢y; j(Vx) = 0, for al y; < xj.

2. Fordly>Xx

(8 WhenVg(y) —Vx(—b({j})) = 0, thenVx(y) = Vx(Y —b({]})) = 1 = yj > X]
(b) WhenVx(y) —Vx(Y—b({j})) =1=yj =X,
Thus, when Vy(¥) — Vg(Y—b({]})) = 1, it remains to show that the formula (A.2) reduceto

W

Ox;,j(Vx) = #, foreach jeN (A3

Let
Ci(7) = U w;j (X)) A4
i) T_%‘;(i) (-1 TP Ay (A4

reT
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then (A.2) can be represented as

0x,i(V) = 2, Ci9)-1= 3, Ci(7) (A.5)
ok ok

Givenany j € N, assume M;(X) = S. By theinclusion-exclusion principle we have

YC® = X CG®m+ Y )™t Y @4+ XY )T Y ¢
¥i=Xj ¥i=Xj IT|=1 Yj=Xj ITI=Is| Yj=Xj
y>X y=X TCS y>R+b(T) y>R+b(T)

For the case X+ b(T) =¥, we have

wi(xj) w;j(Xj)
2, O b = Wit S i+ 1)~ Wi 9
Y>R+b(T) reT
However,
. _ \T\+1 wj(xj)
YZ;(j “u) YZ;(j “l TZC‘S [IX1lw + Z [Wr (Xr +1) — Wr(Xr)]
I>% =% TZ ret
_ 1)TH wj(xj)
+TC§‘ ® IKllw + Y [We (X + 1) — Wi (%r)]
T#) reT
_ PN wj(xj)
b | TS o+ Do
+ z (_1)|T|+l Wi (Xj)
TCM;(®) [IXl|w + Z [Wr (Xr 4+ 1) — Wr(Xr)]
T£0 L reT
_ o wj(x) _
- ||X||W q)Xj,J (VY)
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A.4 Proof of Lemma4.1

Proof: LetS, T CNand|T|=t,|S|=s,|N|=n.

> { > ZM x_] X [¥(S) ~V(S\{j})
JESCN | TCN\S WS !

= i l > (—1)S+t_hV(H)l = X 2 [Z(—l)r_hV(H)l
jeSUTgN_SE,UTM HCSUT JERCN ZF,{?W HCR

= Y (Ow)j(ur)-or = (9w)j( X, arUR) = (0w);(V)

jERCN RCN

A.5 Proof of Theorem 4.2

Proof: Since each player j € N just hasonly two actions, xj = 0, 1. Define

V(X) = v(S), for al X = (X1,X,..., %) € B" = {0,1}", where$ = {i[x; = 1,¥i € N}.

Then
$oj(V) = 0O, clearly.
o) = Y| Y o ;i 04) % V(%) —V (2= b{j})]
! K=Llxj=k [TCM;(®) ||X||w+Ef[Wr(XrﬂLl)—Wr(Xr)]
;(eBn re

Thus we represent the formula as following :

. _ T wj(X;j) RV
ot = x,zl{%m( Y R X e D g | YR
Xepn re
= S| S )T ws) —v(s\ ()
jes | et Z A
SCN TQN\S iesSuT

Now we prove ¢1,j(V) = (¢w)j(v) by induction. Let S, T CN ,s=|S|,t =|T|,n=|N].

(1) Forn=1,N={1}. 011(V) =V (1) =v({1}) = (dw)1(v)
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(2 Forn=2,N={i,j}.

V) = _qylTl w;j (X)) ) V(X bl
oY) szchM,(x)( g ”X”W‘f‘Zl‘_[Wr(Xr-f—l)—Wr(Xr)] x V) =VX=b{i}]

Xepn re

- L _ -

= XXy ZMZM]XMS) v(S\ {i})]
SCN | TCN\S ieS ieT

= 2|2 <1>Tz’”%]x[v<s>v<8\{j}>]
JES jg¢T ) i
SCN | TCN\S iesuT

= 05 O < v+ [ ] ) - vt

= [v({i,j}) —v({i}) —v{i}) +v(0)] Mﬁj nT V({i}) —v(0)]
= o j3(0w) (Ui jy) + o (dw) j (Ugjy)
= (0w)j( Y, asus) = (¢w)j(V)

SCN

(3) Forn=k,N={1,2,..., k} =K. By Lemma4.l

_ B 3 Aj B .
oLi(V) = %{E(”tzmzxi]w” vS\{i})]
SCK | TCK\S ieS ieT

Y, 0s(0w)j(us) = (ow)j( X asus) = (9w) (V)

SCK SCK
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(4) Forn=k+1,N ={1,2,... k}U{k+1} = KU {k+1}.

A .
01j(V) = X { > (= J}V]X[V(S)V(S\{J})]
jes igT Z I
SCK{k+1} | TCKU{k+1}\S iesuT
t A ;
= 2| X US| xMO) v\ {i})]
jes igT 2 !
SCK | TCKU{k+1}\S iesuT
t Aj
+ z z (1) —=——
jes igT Z Ai
SU{k+1}CKU{k+1} [ TCKU{k+1}\Su{k+1} ieSUTU{k+1}

X VSU{k+1}) = v(S{k+1}\ {j})]

For the notation conveniencewe denote SU{k+ 1} C KU {k+ 1} = S C K, wherewe dtill cantell

out the form M y .
ieSUTU{k+1}
o) = Y| T (0 Y B s) —v(s\ {j))]
’ jes | igT Z Ao _ > A
SCK [ TCK\S ieSuT TCK\S ieSUTU{k+1}
COY Y B X WSU K1) —v(SU K+ 1)\ ()
jes | igT _ DI
SCK | TCK\S ieSUTU{k+1}
= S| Y s —v(s\ {j))]
jes i¢T z Ai
SCK _TQK\S iesSuT
FS Y oM sy —v(s\ ()
jeT jeT ) Z 7"
SCK [ TCK\S ieSUT Ulk+1}
FOS Y e wsU K+ 1) —v(SU ket 1)\ ()]
jes | ieT _ 2 A
SCK [TCK\s iESUT U{k+1}
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Hence we get the Shapley value for multichoice game:

Aj .
01j(V) = > os(ow)j(us) + 2 > (=pt ’ y [V(S) —Vv(S\{i})]
scK SU{k+1}JS<U{k+1} Tgrg\s ieSUT U{k+1}
Aj .
+ )y 2 (—D‘ﬁ VESU{k+1}) —v(Su{k+1}\{j})]
Su{k+1}léls<u{k+l} TJéKT\S ieSUTU{k+1}

But here we still denoteSU {k+1} C Ku {k+ 1} =S C K for convenience.

01j(V) = > os(dw)j(us)

SCK

+ Y| Y [(-DVESU{k+1)+ (- vSu{k+ 13\ {j})

jes j¢T
SCK TJgK\S (A7)

b D)+ DRG] g

ieSUTU{k+1}

By Lemma 4.1 we can write (A.7) as follow:

= os(0w)j(us) + > Osu(k+1} (Ow) j (Usugkray)

SCK SU{k+1}CKU{k+1}
= > as(dw)j(us)
SCKU{k+1}
a
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