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Balanced Realization for Stable Nonlinear

Input-Affine Systems

Huang-Nan Huang Fang-Bo Yeh�

Abstract

In this paper, we are concerned with the balancing for stable nonlinear time invariant input-affine sys-

tem. Firstly, the system’s Hankel norm is computed via game theoretical approach incorporating with the

parameter optimization technique. This computation algorithm is derived based on the continuity of the

costate vector at present time, which leads to a benefit to avoid solving the controllability and observability

functions through a set of partial differential equations. Afterward, the balanced realization is conducted.

Certain numerical examples are used to demonstrate the computational technique for Hankel norm and

balanced realization.
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1 Introduction

In many engineering applications, processes are described by complex models which are diffi-

cult to analyze and difficult to control. Reduction of the order of the model may overcome some of

these difficulties, but it is quite possible that model reduction incurs a significant loss of accuracy.

Therefore, the system has to be analyzed in a manner that is useful for the application purpose.

Simplification of the model based on this analysis usually results in a model if lower complexity

which is easier to handle, and in a corresponding simplification of synthesis procedures for control

and filtering problems. Furthermore, the simplification decreases the computational effort. Every

application has its own demands, and different model reduction methods have different properties.

For example, we refer to van Woerkom [18], where a survey of order reduction approaches for

flexible spacecraft dynamics is given.

For similar reasons, it is also desirable to have methods available for designing lower-order

controllers for high-order systems. The implementation of lower-order controller is simpler, since
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there are fewer things to go wrong in the hardware or bugs to fix in the software, they are easy

to understand, an the computational requirements are lower. Controller reduction methods may

be divided into a direct and indirect class. The direct methods are based on some optimization or

other procedure by which lower-order controllers is obtained, and the indirect methods rely upon

the higher-order controller which is first found, and then simplified to a lower-order controller (see

e.g. Anderson and Liu [3]).

In practice, model reduction approximation is often based on trial and error methods, knowl-

edge about the physical properties of the system, or other intuitive methods. Since this is not every

satisfying (it is for instance for obvious reasons better to obtain immediately the approximation

that is the best from an analysis and control purpose point of view), formalization of model reduc-

tion has been studied by a number of people. For instance, Glover [5] investigated the optimality

of model approximations in the Hankel norm, and gave a formal characterization of all optimal

Hankel norm approximations.

Moore [10] introduced the balancing for stable minimal linear systems. The balancing method

offers a tool to measure the contribution of the different state components to the past input and

future output energy of the system, which are measures of controllability and observability. This

analysis yield a methodology for model reduction. Since its introduction, balancing theory for

stable linear systems has been formalized in several directions. Balancing as a model reduction

method has been formalized by Glover [5], and Enns [4], who obtained an upper-bound for the

error in the Hankel and L∞ norm, respectively. Furthermore, open-loop balancing theory has been

generalized to a balancing method for unstable linear systems(e.g. Meyer [8], Ober and McFarlane

[12]), a balancing method for mechanical system (e.g. Van der Schaft and Oeloff [17]), and to

closed-loop balancing methods (e.g. Jonckheere and Silverman [6], Opdenacker and Jonckheere

[13], Mustafa and Glover [11]).

The Hankel norm is defined as the supremum of the ratio of the future output energy to the

minimal input control energy and it has the same value as the ratio of the controllability function

to the observability function. Hankel norm approximation method is one of the most popular

approach to find a suitable approximation for a given high-order model, which is a crucial issue

in the controller design process. The key step in Hankel norm model reduction is to find the

balanced realization of the system. Hence, balancing theory is closely related to Hankel norm

approximation. Hankel norm model reduction in state-space approach and in frequency-domain

approach has been addressed in many literatures. Readers have interested in this topic can refer to

Scherpen [16] and the references therein.

In this study, we are concerned with the balancing for nonlinear system. Firstly, the Hankel

norm of nonlinear, time-invariant systems is computed through game theory together with parame-

ter optimization technique which can avoid to solve a set of partial differential equations proposed

by Scherpen [16]. Afterward, we consider the balanced realization for stable nonlinear system. In
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Scherpen [16], the Morse lemma was used to guarantee the existence of the coordinate transfor-

mation such that Lemma 4.2 in this paper holds, but the method to find this transformation is not

provided. Here, the construction of this transformation is derived.

This paper is organized as follows. In section 2, we summary certain matrix calculus and some

important definitions and lemmas for later use. The computation algorithm for the Hankel norm

of nonlinear input-affine system is then established in section 3 and we also demonstrates that the

calculation of the Hankel norm of a linear system can be treated as a special case of the nonlinear

system. Section 4 is devoted to the construction of balanced realization for the nonlinear system.

Finally, some numerical examples are used to illustrate this analytic computation of nonlinear

Hankel norm in section 5. In section 6, some concluding remarks are made.

2 Mathematical preliminary

In this section, we summarize some important mathematical results including matrix calculus.

A useful form of partitioned matrix is obtained by defining the Kronecker product of two matrices

A = [ai j] 2 Rm�n and B = [bi j] 2 Rp�q by

A
B = [ai jB] =

2
66664

a11B a12B � � � a1nB

a21B a22B � � � a2nB
...

...
. . .

...

am1B am2B � � � amnB

3
77775 (2.1)

Thus A
B is an mp�nq matrix and is partitioned into the mn blocks shown in (2.1).

The word smooth and differentiable will be used interchangeably to mean differentiable of

class C∞.

Let x = [x1 x2 � � � xn]
T 2Rn be a vector, s(x)2R be a scalar real-value function, and f (x)2Rm

be a vector field, defined on an open subset W of Rn . We describe now the differential operation

involving these real-value functions. The gradient of s with respect to x is the column vector

sx
4
=

∂s
∂x

=

2
666664

∂s
∂x1
∂s

∂x2
...

∂s
∂xn

3
777775 ; sT

x =

�
∂s
∂x

�T

=
∂T s
∂x

(2.2)

The Hessian of s with respect to x is the second derivative

sxx
4
=

∂2s
∂x2 =

�
∂2s

∂xi∂x j

�
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which is a symmetric n�n matrix. The Jacobian of f with respect to x is the m�n matrix

fx
4
=

∂ f
∂x

=

�
∂ f
∂x1

∂ f
∂x2

� � �
∂ f
∂xn

�

=

2
666664

∂ f1
∂x1

∂ f1
∂x2

� � � ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

� � � ∂ f2
∂xn

...
...

. . .
...

∂ fm
∂x1

∂ fm
∂x2

� � � ∂ fm
∂xn

3
777775 (2.3)

We shall use the shorthand notation

∂T f
∂x

=

�
∂ f
∂x

�T

2 Rn�m

And the chain rule is denoted by

∂
∂x

(s f ) =
∂
∂x

( f s) = s fx + f sT
x

Sometime, we use ∂
∂x to denote the differential operator, i.e.

∂
∂x

=

�
∂

∂x1

∂
∂x2

� � �
∂

∂xn

�T

Lemma 2.1 Let L be a smooth function in a convex neighborhood W of 0 in R n , with L(0) = 0.

Then

L(x1;x2; : : : ;xn) =

n

∑
i=1

xiai(x1;x2; : : : ;xn)

for some suitable smooth function ai defined on W, with ai(0) = ∂L
∂xi

(0).

Proof: See Lemma 2.1 of Milnor(1969). 2

From this lemma, if we let

A(x) =

2
66664

a1(x)

a2(x)
...

an(x)

3
77775

then, the function L can be expressed as

L(x) = A(x)x

with A(0) = ∂L
∂x (0).
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Definition 2.2 The tangent space of a smooth manifold M at a point p will be denoted by T M p. If

g : M ! N is a smooth map with g(p) = q, then the induced linear map of tangent spaces will be

denoted by g� : T Mp ! T Nq

Definition 2.3 Let f be a smooth real valued function on a manifold M. A point p is called a

critical point of f if

fx(p) = 0

where x denotes a local coordinate system in a neighborhood of U of p. The real number f (p) is

called a critical values. Moreover, a critical point p of f is called non-degenerate if the matrix

fxx =

�
∂2 f

∂xi∂x j

�

is nonsingular.

Definition 2.4 Let p be a critical point of f . The Hessian of f at p is a symmetric bilinear

functional, f��, on TMp which is defined by

f��(v;w) =

n

∑
i; j=1

aib j
∂2 f

∂xi∂x j

where (x1;x2; : : : ;xn) is the local coordinate system, and v and w are elements of T M p given by

v =
n

∑
i=1

ai
∂

∂xi

����
p
; w =

n

∑
i=1

bi
∂

∂xi

����
p

with ai and bi are constant functions.

Definition 2.5 The index of a bilinear functional H, on a vector field V , is defined to be the

maximal dimension of a subspace of V on which H is negative definite; the nullity is the dimension

of the null-space, i.e. the subspace consisting of all v 2V such that H(v;w) = 0 for every w 2V.

Lemma 2.6 [Lemma of Morse] Let p be non-degenerate critical point for f . Then there is a local

coordinate system (y1;y2; : : : ;yn) in a neighborhood U of p with yi(p) = 0 for all i and such that

the identity

f (x) = f (p)� (y1)
2��� �� (yλ)

2
+(yλ+1)

2
+ � � �+(yn)

2

holds throughout U, where λ is the index of f at p.

Proof: See Lemma 2.2 of Milnor(1969). 2
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Lemma 2.7 If there exists a neighborhood V of 0 where the number of distinct eigenvalues of

M(x) is constant for x 2 V, then on V the eigenvalues λ i(x), i = 1;2; : : : ;n, are smooth functions

of x, as well as the associated eigenvectors.

Proof: Follows from Theorem 5.13a in Kato(1982). 2

3 Computation of Hankel norm of nonlinear system

Consider a smooth, i.e. C∞, nonlinear input-affine system of the form

G:
ẋ(t) = f (x(t))+g(x(t))u(t); x(0) = x0 (3.1a)

y(t) = h(x(t)) (3.1b)

with t 2 (�∞;+∞), u(t) = [u1(t);u2(t); : : : ;um(t)]T 2 Rm , y(t) = [y1(t);y2(t); : : : ;yp(t)]T 2 Rp ,

and x(t) = [x1(t);x2(t); : : : ;xn(t)]T are local coordinates for a smooth state space manifold denoted

by M. Furthermore, f ;g1;g2; : : : ;gm are smooth vector fields on M, isomorphically embedded in

R
n , where g = [g1;g2; : : : ;gm], and h = [h1;h2; : : : ;hp]

T , hi(x) 2 R is the smooth output map of

the system. Without loss of generality, we assume that the system has an equilibrium in 0, i.e.

f (0) = 0 and h(0) = 0.

Remark 3.1 The function g(x) may have the following component form

g(x) = [g1 g2 � � � gm] =

2
66664

g11 g12 � � � g1m

g21 g22 � � � g2m
...

...
. . .

...

gn1 gn2 � � � gnm

3
77775

Assume the solution of the system (3.1a) is

x(t) = ϕ(t; t0;x0;u); ϕ(t0; t0;x0;u) = x0

under the influence of the control input function u. Then we can define the system’s reachability

and observability as following:

Definition 3.2 [van der Schaft(1992)]

1. The system (4) is reachable from x0 if for any x̃ 2M there exists a t̃ � 0, and an input u such

that x̃ = ϕ(t̃; t0;x0;u).
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2. The system (4) is zero-state observable if u � 0, y � 0 implies x(t) � 0, i.e. for all x 2 M,

h(ϕ(t̃; t0;x0;u)) = 0, for all t � t0 ) ϕ(t̃; t0;x0;u) = 0, for all t � t0.

3. The system (4) is locally zero-state observable at 0, if there exists a neighborhood W � M

of 0 such that for all x 2W, h(ϕ(t̃; t0;x0;u)) = 0, for all t � t0 ) ϕ(t̃; t0;x0;u) = 0, for all

t � t0.

3.1 The controllability function and observability function

Define the controllability and obeservability functions, L c(x0) and Lo(x0), respectively, of the

nonlinear system (3.1) as:

Lc(x(t))
4
= min

u2L2
�

x(�∞)=0

1
2

Z t

�∞
u(τ)T u(τ) dτ (3.2)

Lo(x(t))
4
=

1
2

Z ∞

t
y(τ)T y(τ) dτ (u(τ)� 0 ; t � τ < ∞) (3.3)

where L2
�
4
= L2

((�∞;0]). Obviously, these functions do not necessarily exist, i.e. are not necessar-

ily finite. In particular, Lc(x0) may be infinite if the state x0 cannot be asymptotically reached form

0 in backward time, i.e. there exists no input u 2 L2
� such that the system state x(t) is transferred

from the rest x(�∞) = 0 to the current state x(0) = x0 and the function Lo(x0) may also be infinite

if the system is unstable. Also, we observe that Lc(0) = 0 and Lo(0) = 0 due to the reason that

when x0 = 0, there is no input needed to drive the system state x(t) from a rest to a rest and hence

zero system output will be generated.

Assumptions: [Scherpen(1994)] In order to have meaningful derivations in the rest of this paper,

we make the following standing assumptions:

1. f (x) is asymptotically stable on some convex neighborhood W �M of 0.

2. The system is zero-state observable on W .

3. Lc and Lo exist and are smooth on W .

4. ∂2Lc
∂x2 (0)> 0 and ∂2Lo

∂x2 (0)> 0

3.2 Variational approach

If the system state x(t) is initially relaxed in the infinitely remote pass, i.e. lim t!�∞ x(t) = 0, we

can denote the solution of the system (3.1a) in a simpler form as

x(t) = ϕ(t;u); ϕ(�∞;u) = 0 (3.4)
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under control by the input function u.

Based on the assumptions , we define the Hankel norm of this nonlinear system as

Definition 3.3 The Hankel norm of the nonlinear input-affine system G is defined as

kGkH
4
= sup

u2L2
�

u 6=0

kykL2
+

kukL2
�

(3.5)

where L2
+

4
= L2

([0;+∞)),

kykL2
+

4
=

�Z ∞

0
y(t)T y(t) dt

� 1
2

; and kukL2
�

4
=

�Z 0

�∞
u(t)T u(t) dt

� 1
2

Let the collection of all u 2 L2
� such that the current state x0 can be reachable from rest

x(�∞) = 0 be denoted by U0, i.e.

U0 = fu 2 L2
�jϕ(0;u) = x0g; (3.6)

and hence, x0 must belong to the reachable set of 0, i.e. x0 2W . Thus we have the following

simple theorem:

Theorem 3.4 Suppose the nonlinear system G satisfies the standing assumptions, then

kGkH = sup
x02W
x0 6=0

µ(x0) (3.7)

where

µ(x0) = max
u2U0

kykL2
+

kukL2
�

(3.8)

Proof: Since the controllability function Lc(x0) of the system G exists, hence U0 is nonempty and

there exists u2 L2
� such that the trajectory of x transfers from x(�∞) = 0 to x(0) = x 0 for arbitrary

x0. Similarly, the observability function Lo(x0)) exists. Therefore we can express the Hankel norm

of the system G in (3.5) as

kGkH = sup
x02W
x0 6=0

max
u2U0

kykL2
+

kukL2
�

for a given x0, then after defining µ(x0) as given by (3.8), the desired result is followed. 2

Remark 3.5 The computation of kGkH can be done in two sequential steps as follows:
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Step 1: For a given nonzero x0 2W , find µ(x0).

Step 2: Find the supremum of µ(x0) for all x0 2W .

Suppose γ is an upper bound of µ(x0), then

µ2
(x0)� γ2 if and only if γ2kuk2

L2
�

�kyk2
L2
+

� 0 8 u 2U0 (3.9)

Let γ� be the maximal value of µ(x0), then there exists the optimal output function y� and the

control input function u� satisfying the following equation:

γ2
� = µ2

(x0) =

ky�k2
L2
+

ku�k2
L2
�

(3.10)

Therefore, for any given x0 2W , the computation of µ(x0) is equivalent to solve the following

minimal energy problem:

Given

ẋ = f (x)+g(x)u; x(0) = x0; x(�∞) = 0

y = h(x)

Find

min
u2U0

�
J(x(t);u(t)) =

γ2

2

Z 0

�∞
u(t)T u(t)dt�

1
2

Z ∞

0
y(t)T y(t)dt

�
(3.11)

The associated the Hamiltonian function for this minimal problem is

H(x;u;λ) =

(
γ2

2 uT u+λT
( f (x)+g(x)u) if t 2 (�∞;0]

λT f (x)� 1
2 h(x)T h(x) if t 2 [0;∞)

where λ(t), the Lagrange multiplier, is a continuous function and it must satisfy the condition

λ(�∞) = λ(∞) = 0. Since the Hamiltoninan function of dynamic system must satisfy

dH
dt

=
∂H
∂t

+
∂H
∂x

ẋ+
∂H
∂u

u̇+
∂H
∂λ

λ̇ =
∂H
∂t

along the optimal trajectory (x�;u�;λ�), and now our system is time-invariant, i.e. ∂H
∂t = 0. There-

fore the Hamiltonian function along the optimal trajectory is constant, i.e.

H(x�;u�;λ�) = 0 (3.12)

due to the condition for λ(�∞) = λ(∞) = 0.

The necessary condition for this extremal problem is computed as follows:
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(I) when t 2 (�∞;0]:
The optimal control law u� satisfies ∂H

∂u = 0, and this gives

γ2u�+g(x)T λ� = 0 or u� =�
1
γ2 g(x)T λ� (3.13)

Since

∂λT g(x)u
∂x

= ∑
i

∑
j

λi
∂gi j(x)

∂x
u j

= ∑
i

∑
j

λi

2
666664

∂gi j(x)
∂x1

∂gi j(x)
∂x2
...

∂gi j(x)
∂xn

3
777775u j = ∑

i
∑

j

2
666664

λi
∂gi j(x)

∂x1
u j

λi
∂gi j(x)

∂x2
u j

...

λi
∂gi j(x)

∂xn
u j

3
777775

= (In
λT
)(

∂
∂x

g)u = (In
uT

)(
∂
∂x

gT

)λ

where In denotes an n�n identity matrix, then the adjoint equation λ̇ =� ∂H
∂x becomes

λ̇� =�
∂T f
∂x

λ�+
1
γ2
�
(In
λT g)(

∂
∂x

gT

)λ� (3.14)

Hence we can consider λ� as an explicit function of x. Since from (3.1a) and (3.15)

λ̇ =
∂T λ
∂x

dx
dt

=
∂T λ
∂x

�
f (x)�

1
γ2 g(x)g(x)T λ

�

and, after some algebraic operator, we have the following equation for the optimal costate

vector:

∂
∂x

�
f (x)T λ�

1
2γ2�

λT g(x)g(x)T λ
�����

(x�;λ�)
= 0

This leads to the same equation obtained by using the fact that the Hamiltonian function

along the optimal trajectory is constant and equal to zero. Let the solution of (3.13) be in

the form

λ�(x(t)) =�γ2Ψ�(x(t)) with Ψ�(0) = 0 (3.15)

which satisfies the requirement λ(�∞) = λ(x(�∞)) = 0 and the function Ψ�(x) satisfies

the following equation:

Ψ�(x)
T f (x)+

1
2

Ψ�(x)
T g(x)g(x)T Ψ�(x) = 0 (3.16)
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The substitution of (3.16) into (3.13) yields

u� =+g(x)T Ψ�(x) (3.17)

Thus (3.1a), for the optimal state x�(t), becomes

ẋ = f (x)+g(x)g(x)T Ψ�(x) (3.18)

In order to have a stable solution, we need that�( f (x)+g(x)g(x)T Ψ�(x)) is asymptotically

stable on W . Let the solution of this equation be

x(t) = Φ�(t;x0) with Φ�(�∞;x0) = 0 (3.19)

It is noted that Φ�(0;x) has fixed point at x= x0 and Φ�(�∞;x) = 0 for all x2W . Therefore,

the optimal control input is

u�(t) = g(Φ�(t;x0))
T Ψ�(Φ�(t;x0)) (3.20)

and optimal costate vector is

λ�(t) =�γ2
�Ψ�(Φ�(t;x0)) (3.21)

Thus

λ�(0) =�γ2
�Ψ�(x0) (3.22)

(II) when t 2 [0;∞):

Since no control will be input to the system, the optimal control law is u �(t) = 0. The state

equation becomes as

ẋ(t) = f (x); y(x) = h(x) (3.23)

Since f (x) is asymptotically stable on W , the explicit form of the optimal state vector may

take the form

x�(t) = Φ+(t;x0) with Φ+(∞;x0) = 0 (3.24)

The optimal output is

y�(t) = h(Φ+(t;x0)) (3.25)

The corresponding adjoint equation gives

λ̇� =�
∂T f
∂x

λ�+
∂T h
∂x

h(x)
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Using the similar idea to solve the costate vector for t 2 (�∞;0), we may consider λ � as an

explicit function of x� and since

λ̇ =
dλ
dt

=

�
∂λ
∂x

�T dx
dt

=
∂T λ
∂x

f (x)

then it follows

∂
∂x

�
f (x)T λ�

1
2

h(x)T h(x)

�����
x�;λ�

= 0

This is the same as the equation given by the fact of zero-value Hamiltonian function along

the optimal trajectory. Let the solution of the adjoint equation be in the form

λ�(t) = λ�(x(t)) =�Ψ+(x(t)) with Ψ+(0) = 0 (3.26)

with λ(∞) = 0, and then the function Ψ+(x) must satisfy

Ψ+(x)
T f (x)+

1
2

h(x)T h(x) = 0 (3.27)

Due to the continuity of λ� at t = 0, we have

γ2
�Ψ�(x0) = Ψ+(x0) (3.28)

where γ� is the corresponding optimal value of µ(x0). Multiplying the both sides of (3.28) with

nonzero vector x0, one obtains

γ2
� =

xT
0 Ψ+(x0)

xT
0 Ψ�(x0)

(3.29)

Therefore, from (3.10) one obtains

µ2
(x0) =

xT
0 Ψ+(x0)

xT
0 Ψ�(x0)

(3.30)

The sufficient condition for this minimal problem is given in the book of Athans and Falb(1966)

or Anderson and Moor(1990), and it requires the following matrix"
∂2H
∂u2

∂2H
∂u∂x

∂2H
∂x∂u

∂2H
∂x2

#

to be semipositive along the optimal trajectory (x�(t);u�(t);λ�(t)). Or equivalently, the optimal

trajectory must give the cost functional J to be minimal , i.e.

J(x(t);u(t))� J(x�(t);u�(t)) 8u(t) 6= u�(t)

It is noted that the following simple lemma holds
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Lemma 3.6

Lo(x0)

Lc(x0)
=

xT
0 Ψ+(x0)

xT
0 Ψ�(x0)

(3.31)

Proof: The minimal value of the cost function J(x �;u�) is given by

J(x�;u�) = min
u2U0

γ2

2

Z 0

�∞
u(t)T u(t)dt�

1
2

Z ∞

0
y(t)T y(t)dt;

= γ2
�Lc(x0)�Lo(x0) = 0;

or equivalently,

γ2
� =

Lo(x0)

Lc(x0)
(3.32)

By (3.29) and (3.32), the equality in (3.31) holds. 2

Remark 3.7 Substituting (3.19) into (3.2), we obtain

Lc(x0) =
1
2

Z 0

�∞
Ψ�(x)

T g(x)g(x)T Ψ�(x)dt

=

Z 0

�∞

�
Ψ�(x)

T f (x)+Ψ�(x)
T g(x)g(x)T Ψ�(x)

�
dt (by (3.16))

=

Z x0

0
Ψ�(x)

T dx ( by (3.18))

hence,

∂Lc

∂x
(x0) = Ψ�(x0) (3.33)

According to assumptions that Lc exists and ∂2Lc
∂x2 (0) > 0, it can be shown that have Lc(x) >

0; 8 x(6= 0) 2W (see Theorem 3.1.8, Scherpen(1994)).

Remark 3.8 From (3.3) it follows

Lo(x0) =
1
2

Z ∞

0
h(x)T h(x)dt

= �
Z ∞

0
Ψ+(x)

T f (x)dt (by (3.27))

= �
Z 0

x0

Ψ+(x)
T dx (by (3.23))

Therefore

∂Lo

∂x
(x0) = Ψ+(x0) (3.34)



32

Similarly, with assumptions that this system is locally zero-state observable, Lo exists and ∂2Lo
∂x2 (0)>

0, hence, it can be prove that Lo(x)> 0; 8 x( 6= 0) 2W (see Theorem 3.1.12, Scherpen(1994)).

The following theorem has been derived in Scherpen(1994) (Theorem 3.1.2 and 3.1.3) and we

provide an alternative proof here.

Theorem 3.9 Assume that f (x) is asymptotically stable on a neighborhood W of 0. L o exists and

is smooth on W if and only if Lo is the unique smooth solution of

∂T Lo

∂x
f (x)+

1
2

h(x)T h(x) = 0; Lo(0) = 0; (3.35)

for all x 2 W. Furthermore Lc exists and is smooth on W (and thus the minimum in (3.11) is

obtained) if and only if Lc is the unique solution of

∂T Lc

∂x
f (x)+

1
2

∂T Lc

∂x
g(x)g(x)T ∂Lc

∂x
= 0; Lc(0) = 0; (3.36)

for all x 2W , such that �( f (x)+g(x)g(x)T ∂Lc
∂x ) is asymptotically stable on W

Proof:

Lo Part : Suppose that f (x) is asymptotically stable on W , then the solution x of ẋ(t) = f (x(t)) is

stable and limt!∞ x(t) = 0. Since

Lo(x(t)) =
1
2

Z ∞

t
y(t)T y(t)dt

=
1
2

Z ∞

t
h(x(t))T h(x(t))dt by (3.1b)

=

Z ∞

t

�
1
2

h(x)T h(x)+
∂T Lo

∂x
( f (x)� ẋ)

�
dt

=

Z ∞

t

�
1
2

h(x)T h(x)+
∂T Lo

∂x
f (x)

�
dt�

Z 0

x(t)

∂T Lo

∂x
dx

=

Z ∞

t

�
∂T Lo

∂x
f (x)+

1
2

h(x)T h(x)

�
dt�Lo(0)+Lo(x(t))

hence, the Lo exists and is smooth if and only if Lo is the unique smooth solution of (3.35).
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Lc Part : Since

1
2

Z t

�∞
u(t)T u(t)dt =

1
2

Z t

�∞
u(t)T u(t)dt +

Z t

�∞

�
∂T Lc

∂x
(ẋ� f (x)�g(x)u)

�
dt by (3.1a)

=
1
2

Z t

�∞

�
u�g(x)T ∂Lc

∂x

�T �
u�g(x)T ∂Lc

∂x

�
dt

�
Z t

�∞

�
∂T Lc

∂x
f (x)+

1
2

∂T Lc

∂x
g(x)g(x)T ∂Lc

∂x

�
dt +

Z x(t)

0

∂T Lc

∂x
dx

=
1
2

Z t

�∞

�
u�g(x)T ∂Lc

∂x

�T �
u�g(x)T ∂Lc

∂x

�
dt

�
Z t

�∞

�
∂T Lc

∂x
f (x)+

1
2

∂T Lc

∂x
g(x)g(x)T ∂Lc

∂x

�
dt +Lc(x(t))�Lc(0)

Thus, we have

Lc(x(t)) = min
u2L2

�

1
2

Z t

�∞
u(t)T u(t)dt

= min
u2L2

�

(
1
2

Z t

�∞

�
u�g(x)T ∂Lc

∂x

�T �
u�g(x)T ∂Lc

∂x

�
dt

�
Z t

�∞

�
∂T Lc

∂x
f (x)+

1
2

∂T Lc

∂x
g(x)g(x)T ∂Lc

∂x

�
dt

�
+Lc(x(t))�Lc(0)

Hence Lc exists and is smooth if and only if Lc is the unique smooth solution of (3.36)

providing the the system

ẋ(t) = f (x(t))+g(x)g(x)T ∂Lc

∂x

is antistable, or equivalently,�( f (x)+g(x)g(x)T ∂Lc
∂x ) is asymptotically stable on W .

2

Theorem 3.10 Assume that f (x) and �( f (x)+ g(x)g(x)T Ψ�(x)) are asymptotically stable on a

neighborhood W of 0, and Ψ+(x);Ψ�(x) are the unique smooth solutions of

Ψ+(x)
T f (x)+

1
2

h(x)T h(x) = 0; Ψ+(0) = 0; (3.37)

and

Ψ�(x)
T f (x)+

1
2

Ψ�(x)
T g(x)g(x)T Ψ�(x) = 0; Ψ�(0) = 0; (3.38)

for all x 2W ,respectively. Then the Hankel norm of G , kGkH, is

kGk2
H = sup

x02W

xT
0 Ψ+(x0)

xT
0 Ψ�(x0)

(3.39)
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which is an one-parameter optimization problem with x0 2W and the optimal state x�0 must satisfy

d
dx0

�
xT

0 Ψ+(x0)

xT
0 Ψ�(x0)

�����
x0=x�0

= 0 (3.40)

with constraint

d2

dx2
0

�
xT

0 Ψ+(x0)

xT
0 Ψ�(x0)

�����
x0=x�0

< 0 (3.41)

If the optimal state x�0, obtained from (3.40), is not located inside W or does not satisfy (3.41), then

other numerical methods should be used to solve this one-parameter optimization problem (3.39).

Proof: Since Ψ+(x) =
∂Lo
∂x and Ψ�(x) =

∂Lc
∂x and due to the assumption that f (x) and �( f (x)+

g(x)g(x)T Ψ�(x)) are asymptotically stable on W , the existence of Ψ+(x) and Ψ�(x) are followed

from Theorem 3.9 and they are the smooth, unique solutions of (3.37) and (3.38), respectively.

Then by Theorem 3.4 and Lemma 3.6, the Hankel norm of the system given by (3.39) is followed.

Hence, the optimal initial state, x�0 must satisfy (3.40) and the constraint (3.41) such that the quan-

tity
xT

0 Ψ+(x0)

xT
0 Ψ�(x0)

at x�0 has global supremum. If the optimal state x�0 of (3.40) does not satisfy the

constraint (3.41) or is not located inside W , the supremum calculation of (3.39) should be solved

by using other optimization techniques. 2

From Theorem 3.10, we see that the method for computing the Hankel norm of the nonlinear

system is much more difficult than that for the linear case.

Example 3.11 Consider a simple one-dimensional nonlinear system

G:
ẋ = f (x)+g(x)u

x 2 R
y = h(x)

Suppose this system is asymptotically stable about the equilibrium point 0, and it is weakly con-

trollable and locally zero-state observable, then f (x) 6= 0 for all x 6= 0 in W of 0. Thus by Theorem

3.10, the functions Ψ+ is given

Ψ+(x) =�
h2
(x)

2 f (x)

Similarly, the function Ψ� is

Ψ�(x) =�
2 f (x)
g2(x)

Therefore

kGk2
H = sup

x02W

xT
0 Ψ+(x0)

xT
0 Ψ�(x0)

=
h2
(x�0)g

2
(x�0)

4 f 2(x�0)
(3.42)
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where x�0, the maximum x0, satisfies

hx(x�0)h(x
�
0)g

2
(x�0)+h2

(x�0)gx(x�0)g(x
�
0)

2 f 2(x�0)
�

h2
(x�0)g

2
(x�0) fx(x�0)

2 f 3(x�0)
= 0

or

hx(x�0)

h(x�0)
+

gx(x�0)

g(x�0)
�

fx(x�0)

f (x�0)
= 0 with f (x�0);g(x

�
0);h(x

�
0) 6= 0 (3.43)

and

h2
(x�0)g

2
(x�0)

2 f 2(x�0)

�
hxx(x�0)

h(x�0)
�

h2
x(x

�
0)

h2(x�0)
+

gxx(x�0)

g(x�0)
�

g2
x(x

�
0)

g2(x�0)
�

fxx(x�0)

f (x�0)
+

f 2
x (x

�
0)

f 2(x�0)

�
< 0

After substituting (3.43), the above equation becomes

hxx(x�0)
h(x�0)

+
gxx(x�0)
g(x�0)

�
fxx(x�0)
f (x�0)

+2
hx(x�0)
h(x�0)

gx(x�0)
g(x�0)

< 0

If the optimal state x�0, obtained through (3.43), is not located inside W , we can use other

numerical methods to solve this one-parameter optimization problem.

3.3 Special case: linear system

In this section, we would like to compute the Hankel norm of a linear, time-invariant system using

Theorem 3.10. Let us consider a stable, linear, time-invariant system as given by

ẋ = Ax+Bu

y = Cx

where A 2 Rn�n , B 2 Rn�m and C 2 Rp�n and Reλi(A) < 0. Suppose this system is controllable

and observable. Therefore, we take W = R. Substituting f (x) = Ax, g(x) = B and h(x) =Cx into

Theorem 3.10, we have

Ψ+(x)
T Ax+

1
2

xTCTCx = 0

and

Ψ�(x)
T Ax+

1
2

Ψ�(x)
T BBT Ψ�(x) = 0

Equivalently,

Ψ+(x)
T Ax+ xT AT Ψ+(x)+ xTCTCx = 0

and

Ψ�(x)
T Ax+ xT AT Ψ�(x)+Ψ�(x)

T BBT Ψ�(x) = 0
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Let P and Q denote the positive controllability and observability gramians, respectively, i.e. they

are the solutions of the following Lyapunov equations:

PAT
+AP+BBT

= 0

QA+AT Q+CTC = 0

Then the functions Ψ�(x) and Ψ+(x) are solved by

Ψ�(x) = P�1x and Ψ+(x) = Qx

Hence the Hankel norm is given by

kGk2
H = sup

x02R

xT
0 Qx0

xT
0 P�1x0

(3.44)

and the optimal state x�0 must satisfy the condition

d
dx0

xT
0 Qx0

xT
0 P�1x0

= 0

or

2
Qx0xT

0 P�1x0�P�1x0xT
0 Qx0

(xT
0 P�1x0)

2
= 0 (3.45)

Let

σ2
=

xT
0 Qx0

xT
0 P�1x0

; (3.46)

then (3.45) becomes

σ2P�1x�0 = Qx�0

Multiplication of both side with P leads to

σ2x�0 = PQx�0 (3.47)

i.e. σ is the singular value of the matrix PQ and x�0 is the corresponding eigenvector and satisfies

the constraint

d2

dx2
0

xT
0 Qx0

xT
0 P�1x0

= 2
d

dx0

�
Qx0

xT
0 P�1x0

�
P�1x0xT

0 Qx0

(xT
0 P�1x0)

2

�����
x0=x0�

< 0

Since

d
dx

P�1x0xT
0 Qx0 = P�1xT

0 Qx0 +P�1x0xT
0 Q = P�1xT

0 Qx0 +Qx0xT
0 P�1
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the above constraint can be deduced as

Q

xT
0 P�1x0

�
P�1xT

0 Qx0

(xT
0 P�1x0)

2
�

4Qx0xT
0 P�1

(xT
0 P�1x0)

2
+

4P�1x0xT
0 P�1xT

0 Qx0

(xT
0 P�1x0)

3

����
x0=x0�

< 0

and, after using (3.46), further simplification leads to

Q�σ2P�1

x�T0 P�1x�0
< 0

or Q�σ2P�1 must be negative definite i.e. for all x 6= 0

xT Qx
xT P�1x

< σ2 (3.48)

Hence a suitable σ2, satisfying (3.47), must be an upper bound of the function µ 2
(x0). Thus the

Hankel norm of this system is

kGk2
H = sup

x02R
µ2
(x0) = sup

x02R

xT
0 Qx0

xT
0 P�1x0

= sup
x0

xT
0 σ2

i P�1x0

xT
0 P�1x0

= max
i

σ2
i = σ2

1 (3.49)

by choosing x0 to be the ith eigenvector. Therefore the Hankel norm is the maximal singular value

of the matrix PQ, denoted by σmax(PQ) which is the same as the result of Glover(1984).

4 Balanced realization

In this section, we will discuss the algorithm to perform the balanced realization for nonlinear

system.

Definition 4.1 A nonlinear system is in balanced form (or simple balanced) if there exists a local

coordinate system z on the neighborhood U of 0 such that the controllability and observability

functions are of the form

Lc(0; : : : ;0;zi;0; : : : ;0) =
1
2

σ(zi)
�1z2

i

Lo(0; : : : ;0;zi;0; : : : ;0) =
1
2

σ(zi)z
2
i

where σi’s are in fact the Hankel singular values.

We need the following Lemma:
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Lemma 4.2 There exists a coordinate transformation x = φ(x̃), φ(0) = 0 (defined on a neigh-

borhood W of 0), such that in the new coordinate x̃ = φ�1
(x) the functions Lc and Lo are of the

form

Lc(x̃)
4
= Lc(φ(x̃)) =

1
2

x̃T x̃; (4.1)

Lo(x̃)
4
= Lo(φ(x̃)) =

1
2

x̃T M(x̃)x̃; (4.2)

where M(x̃) is an n�n symmetric positive-definite matrix such that it entries are smooth functions

of x̃ on φ�1
(W ).

Proof: Since Lc(0) = 0 and ∂Lc
∂x (0) = 0, by applying Lemma 2.1 twice, we have

Lc(x) =
1
2

xT Wc(x) x where Wc(0) =
∂2Lc

∂x2 (0) (4.3)

By Lemma 2.7, we know that there exists a neighborhood W of 0 such that the eigenvalues of

Wc(x) and the associated normalized eigenvectors are smooth functions of x. This implies that

Wc(x) is smoothly diagonalizable on W . Indeed, we can write

Wc(x) = Tc(x)Λc(x)T
T

c (x) where Λc(x) = diag(λc1(x); : : : ;λcn(x))

Here, λci(x) � 0; i = 1; : : : ;n are the eigenvalues of Wc(x) and Tc(x) is the corresponding orthog-

onal matrix of the normalized eigenvectors, i.e. T T
c (x)Tc(x) = In, x 2W . The non-negativity of

λci is due to Assumption 4 that Lc(x) > 0. Define a new coordinate transformation x̃ = v(x) =

Λc(x)
1
2 T T

c (x)x. In these coordinate, we can rewrite (4.3) as:

Lc(x̃)
4
= Lc(v

�1
(x̃)) =

1
2

x̃T x̃;

where x̃ 2 W̃
4
= v(W ). Similarly, Lo can be transformed into

Lo(x̃)
4
= Lo(v

�1
(x̃)) with Lo(0) = 0;

∂Lo

∂x
(0) = 0 on W̃

and, after applying Lemma 2.1 twice, we get

Lo(x̃) =
1
2

x̃T M(x̃)x̃; M(0) = 0 (4.4)

Thus, let

φ = v�1
; or φ�1

(x) = Λc(x)
1
2 T T

c (x) x (4.5)

then, x = φ(x̃) and W̃ = φ�1
(W ). Thus, the lemma is proved. 2
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This lemma has been proved in Scherpen (1994) by using Lemma of Moorse (see Lemma 2.6),

and it does not provide any information about the construction of the coordinate transformation φ.

In our proof, although the neighborhood W may be smaller than that obtained by using Lemma of

Moorse, but we can construct the coordinate transformation φ, which means that the balancing for

nonlinear system is realizable.

Theorem 4.3 Consider the nonlinear system G and the condition of Lemma 2.7 is fulfilled. On a

neighborhood W of 0 there exists a coordinate transformation x = ψ(z), ψ(0) = 0, such that in the

new coordinate z 2V := ψ�1
(W ) the function Lc is of the form

L̃c(z) := Lc(ψ(z)) =
1
2

zT z; (4.6)

and the function L0 is of the form

L̃o(z) := Lo(ψ(z)) =
1
2

zT

0
BB@

τ1(z) 0
. . .

0 τn(z)

1
CCAz; (4.7)

Here, τ1(z) � �� � � τn(z) > 0 are smooth functions of z, called the singular value functions of the

system.

Proof: By Lemma 4.2, we can express the functions L c and Lo as given by (4.1) and (4.2) on W

via coordinate transformation x = φ(x̃). By Lemma 2.7, we know that there exists a neighborhood

W̃ of 0, such that the eigenvalues of M(x̃) and the associated normalized eigenvectors are smooth

functions of x̃. This implies that M(x̃) is smoothly diagonalizable on W̃ . It is noted that the

neighborhood φ(W̃ ) may not be the same as the W in Lemma 4.2, we still use W to denote their

intersection.

Indeed, we can write

M(x̃) = To(x̃)Λo(x̃)T
T

o (x̃) where Λo(x̃) = diag(λo1(x̃); : : : ;λon(x̃))

Here, λoi(x̃)� 0; i = 1; : : : ;n are the eigenvalues of Wc(x) and Tc(x) is the corresponding orthogo-

nal matrix of the normalized eigenvectors, i.e. T T
o (x̃)To(x̃) = In, x̃2 W̃ . The non-negativity of λoi is

due to Assumption 4 that Lo(x̃)> 0. Define a new coordinate transformation z̃ = w(x̃) = T T
o (x̃)x̃.

In these coordinate, we can rewrite (4.1) and (4.2) as:

Lc(w
�1

(z̃)) =
1
2

z̃T z̃;

Lo(w
�1

(z̃)) =
1
2

z̃T Λo(z̃)z̃;

where Λo(z̃)
4
= Λo(w�1

(z̃)) has eigenvalues λoi(z̃)
4
= λoi(w�1

(z̃)). Then, we can transfer Λo(z̃) by

permutation matrix such that it eigenvalues are arranged in the order of decreasing magnitude. Let
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S be the corresponding permutation matrix with S T S = In. Again, we can apply a new coordinate

transformation z = ζ(z̃) 4= ST z̃ such that in these coordinate, the diagonal elements of S T Λ(z̃)S are

in the order of decreasing magnitude. We denote this matrix as Λ(z) = diag(τ 1(z); : : : ;τn(z)) with

τ1(z) � �� � � τn(z)> 0. Thus, let

ψ = φÆw�1 Æζ�1 (4.8)

, then the theorem is proved. 2

Finally, the realization of the functions L̃c(z) and L̃o(z) into balanced form can be done ac-

cording to the method proposed by Scherpen (1994). It is summarized as follows. We take a

smooth transformation z̃i = ηi(zi) := τi(0; : : : ;0;zi;0; : : : ;0)
1
4 zi, i = 1; : : : ;n, and hence z̃ = η(z) =

[η1(z1); : : : ;ηn(zn)]
T on z̃ 2 Ṽ := η(V ): Since L̃o(z)> 0, we have that τi(0; : : : ;0;zi;0; : : : ;0)> 0,

i = 1; : : : ;n, for z 2 V;z 6= 0. Define σi(z̃i) = τi(0; : : : ;0;η�1
i (z̃i);0; : : : ;0)

1
2 , L̃c(z̃) := L̃c(η�1

(z̃))

and L̃o(z̃) := L̃o(η�1
(z̃)). Then,

L̃c(z̃) =
1
2

z̃T

0
BB@

σ1(z̃1)
�1 0

. . .

0 σn(z̃n)
�1

1
CCA z̃; (4.9)

L̃o(z̃) =
1
2

z̃T

0
BB@

σ1(z̃1)
�1τ1(z̃) 0

. . .

0 σn(z̃n)
�1τn(z̃)

1
CCA z̃; (4.10)

where τi(z̃)
4
= τi(η�1

(z̃). This means that at the coordinate axes we have

L̃c(0; : : : ;0; z̃i;0; : : : ;0) =
1
2

σ(z̃i)
�1z̃2

i ;

L̃o(0; : : : ;0; z̃i;0; : : : ;0) =
1
2

σ(z̃i)z̃
2
i

Hence, the controllability and observability functions are in the balanced form.

Now, consider the system G after the coordinate transformation x = χ(z̃) 4= ψ Æη�1 where ψ
is given in (4.8):

˙̃z = f̃ (z̃)+ g̃(z̃)u (4.11)

y = h̃(z̃): (4.12)

Algorithm 41 (Balanced Realization Algorithm)

1) Solve (3.35) and (3.36) for Lc(x) and Lo(x).

2) Compute Wc(x) according to (4.3).
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3) Decompose Wc(x) = T T
c (x)Λc(x)Tc(x) where Λc(x) is a diagonal matrix formed by the eigen-

vectors of Wc(x) and Tc(x) is orthogonal matrix.

4) Find the function φ such that φ�1
(x) = Λc(x)

1
2 Tc(x) x.

5) Compute Lo(x̃) = Lo(φ(x̃))

6) Compute M(x̃) according to (4.4).

7) Decompose M(x̃) = T T
o (x̃)Λo(x̃)To(x̃) where Λo(x̃) is a diagonal matrix formed by the eigen-

vectors of M(x̃) and To(x) is orthogonal matrix.

8) Compute w�1 such that w(x̃) = T T
o (x̃)x.

9) Find the permutation matrix S such that the matrix S T Λo(w�1
(s))S has its diagonal elements

arranged in the order of decreasing magnitude.

10) Compute ζ�1 such that ζ(s) = ST s.

11) Compute Λ(z) = ST Λo(w�1
(ζ�1

(z)))S and its eigenvalues τi(z), i = 1; : : : ;n.

12) Compute η�1 such that η(z) = [η1(z1); : : : ;ηn(zn)]
T with its i-th component

ηi = τi(0; : : : ;0;zi;0; : : : ;0)
1
4 zi.

13) Form the coordinate transformation function x = χ(z̃) where χ = φÆw�1 Æζ�1 Æη�1.

5 Numerical examples

Example 5.1 Consider the following first-order nonlinear system

ẋ = �x+
p

x u

y = sinx

Since f (x) =�x, g(x) =
p

x, and h(x) = sinx, we know that the linearized model is stable, con-

trollable and observable about the equilibrium (0;0). And it follows that the original system is

asymptotically stable, controllable and zero-state observable. We take

W = fx 2 Rj0 � x < πg

The substitution of f (x) =�x, g(x) =
p

x, and h(x) = sinx into (3.49) yields the Hankel norm of

this system

kGkH =

����� sinx�0
2
p

x�0

�����
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where x�0 is the solution of

x�0 =
1
2

tanx�0; x�0 6= 0

with the constraint

�1�
1

4(x�0)
2 +

cosx�0
x�0 sinx�0

< 0

which can be reduced to the condition that

4
1+4(x�0)

2 x�0 < tanx�0 = 2x�0 < 0

or equivalently, x�0 >
1
2 . The solution is x�0 = 1:165561, which belongs to W . Hence the Hankel

norm of the system is found as

kGkH = 0:425621

Example 5.2 Consider the following first-order nonlinear system

ẋ = �x2
+ x u

y = sinx

The unique solution of the ẋ =�x2 with x(0) = x0

x(t) =
x0

1+ tx0

exists over (�∞;� 1
x0
)[ (� 1

x0
;∞). Thus if we take

W = fx 2 Rj�π < x < πg

then the equilibrium point (0;0) is asymptotically stable and this system is zero-state observable.

The substitution of f (x) =�x2, g(x) = x, and h(x) = sinx into (3.49), yields the Hankel norm of

this system

kGkH =

���� sinx�0
2x�0

����
where x�0 is the solution of

x�0 = tanx�0; x�0 6= 0

with the constraint

�1�
2

(x�0)
2 +2

cosx�0
sinx�0

1
x�0

< 0 or
2

2+(x�0)
2 x�0 < tanx�0 = x�0
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i.e. x�0 > 0. Although no explicit x�0 can be found to satisfy the above conditions, we still can

compute the Hankel norm of the system by

kGkH = lim
ε!0

���� sinε
2ε

����= 0:5

The following example is adopted from Example 3.2.8 of Scherpen(1994).

Example 5.3 Consider the following second-order nonlinear system

ẋ = f (x)+g(x) u

y = h(x)

where the state x is acting on

W =

("
x1

x2

#
2 R2

�����(3x1�4x2)
2
< 25

)

This system fulfills the assumptions of Section 3 with x = [x1;x2]
T , u = [u1;u2]

T and y = [y1;y2]
T

and f ,g and h as follows:

f (x) =

"
f1(x)

f2(x)

#
=�

1
625

"
625x1 +112x3

1+552x2
1x2 +639x1x2

2 +216x3
2

384x3
1 +625x2+464x2

1x2 +48x1x2
2�63x3

2

#
;

g(x) =

"
g11(x) g12(x)

g21(x) g22(x)

#
=

2
4 3

p
2

5
4
p

2
25

q
25+7x2

1+48x1x2�7x2
2

� 4
p

2
5

3
p

2
25

q
25+7x2

1+48x1x2�7x2
2

3
5
;

h(x) =

"
h1(x)

h2(x)

#
=

2
4

p
2

5

q
34x2

1�24x1x2 +41x2
2p

2
25 (4x1 +3x2)

2

3
5
:

The substitution of f (x), g(x), and h(x) into (3.37), and (3.38) yields

Ψ�(x0) =

"
x1

x2

#
; Ψ+(x0) =

1
625

"
850x1 +288x3

1�300x2�252x2
1x2�239x1x22

+84x3
2

�300x1�84x3
1+1025x2�239x2

1x2 +252x1x2
2 +288x3

2

#

Consequently the Hankel norm of this system is given by

kGkH =

���� 1
625

850x2
1 +144x4

1�600x1x2�168x3
1x2 +1025x2

2�239x2
1x2

2 +168x1x3
2 +144x4

2

x2
1 + x2

2

����
where x1, x2 must solve the following equations

2(4x1 +3x2)(�3x1 +4x2)(�12x3
1�25x2�36x1x2

2 +7x3
2)

625(x2
1 + x2

2)
2

= 0

2(4x1 +3x2)(�3x1 +4x2)(25x1 +7x3
1 +36x2

1x2 +12x3
2)

625(x2
1 + x2

2)
2

= 0
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with the constraint that the Jacobian matrix
1

625(x2
1 + x2

2)
3
�

2
666666666666664

2(144x6
1�600x3

1x2 +525x2
1x2

2 +432x4
1x2

2+ 4(150x4
1�42x6

1�175x3
1x2�900x2

1x2
2�

432x4
1x2

2 +1800x1x3
2 +336x3

1x3
2�175x4

2+ 378x4
1x2

2 +175x1x3
2�1054x3

1x3
2 +150x4

2+

2013x2
1x4

2�1008x1x5
2�383x6

2) 378x2
1x4

2 +42x6
2)

4(150x4
1�42x6

1�175x3
1x2�900x2

1x2
2� 2(175x4

1�383x6
1+1800x3

1x2 +1008x5
1x2�

378x4
1x2

2 +175x1x3
2�1054x3

1x3
2+ 525x2

1x2
2 +2013x4

1x2
2�600x1x3

2�
150x4

2 +378x2
1x4

2 +42x6
2) 336x3

1x3
2 +432x2

1x4
2 +144x6

2)

3
777777777777775

is negative definite. Since all the solutions can not satisfy the requirement that the Jacobian matrix

is negative definite, we use the graphical method to analyze the extremal property of the Han-

kel norm inside W . The result shows that the supremum value is found to be located along the

boundary of W , i.e. (3x1�4x2)
2
= 25, therefore the Hankel norm of the system is

kGkH =

p
2

This result is as same as the value of largest singular value of this system in Example 3.2.8 by

Scherpen(1994).

The integration of Ψ� and Ψ+ give us the controllability and observability functions as fol-

lows:

Lc(x) =
1
2

xT x; Lo(x) =
1
2

xT

"
m11(x) m12(x)

m21(x) m22(x)

#
x

where

m11(x) =
2

625
(425+72x2

1�192x1x2 +128x2
2)

m12(x) = m21(x) =
12
625

(�25+9x2
1�24x1x2 +16x2

2)

m22(x) =
1

625
(1025+81x2

1�216x1x2 +144x2
2)

We see that this system already has the form of Lemma 4.2, hence, chose the coordinate transfor-

mation as x = ψ(x̃) = x̃ and

M(x̃) = M(x) =

"
m11(x) m12(x)

m21(x) m22(x)

#
:

The eigenvalues of M(x) are:

λ1(x) =
1

25
(25+9x2

1�24x1x2 +16x2
2) = 1+

�
1
5
(3x1�4x2)

�2

λ2(x) = 2:
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The neighborhood V of 0 where the number of distinct eigenvalues is constant, is

V = fx j (3x1�4x2)
2
< 25g

i.e. λ1(x) < 2 for all x 2 V . Therefore, the largest eigenvalue for all x 2 V is λ 2(x). The unitary

matrix of eigenvectors is

To(x) = T =
1
5

"
3 4

�4 3

#

Thus, the second coordinate transformation on V is"
z1

z2

#
= w(x) = T T x =

1
5

"
3x1�4x2

4x1 +3x2

#
:

We note that the transformation function ψ(z) = w�1
(z) and

W = ψ�1
(V ) = w(V ) = fzjz2

1 < 1g:

In the new coordinates, the controllability and observability functions become for z 2W

L̃c(z) =
1
2

zT z; L̃o(z) =
1
2

zT

"
2 0

0 1+ z2
1

#
z:

The singular value functions are τ1(z) = 2 and τ2(z) = 1+ z2
1. To bring in balanced form, we need

to define the transformation z̃ = η(z) as follows:

z̃ =

"
z̃1

z̃2

#
=

"
2

1
4 z1

z2

#

and

z̃ 2 W̃ = η(W ) =

n
z̃
���z̃2

1 < 2
1
2

o
:

For z̃ 2 W̃ , the system is transformed into the following form:8<
:

˙̃z1 = �z̃1 + z̃1z̃2
2 +u18

1
4

˙̃z2 = �z̃1� z̃3
2 +u2

q
2�

p
2z̃2

1 +2z̃2
2(

y1 = 8
1
4 z̃1

y2 =

p
2z̃2

This is the balanced realization of the system (4).
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6 Conclusion

The distance between stable and unstable system can be measured by Hankel norm between

them. This paper establish the analytic method to compute the Hankel norm of a nonlinear,

input-affine, time-invariant systems through game-theoretic approach. This computational method

can be recasted into two sequential steps: solving the minimal energy problem and then an one

parameter-optimization problem. According to the continuity of the costate vector, the Hankel

norm is computed by solving two algebraic equations instead of two partial differential equation

as other paper does. We also show that the Hankel norm computation for the linear time-invariant

system can be regarded as a special case of our results. After all, we derive the algorithm for the

balanced realization of nonlinear input-affine system. Numerical examples for nonlinear input-

affine systems are used to illustrate our computational procedures.
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穩定非線性輸入仿射系統之平衡化實現  
 

黃皇男    葉芳 * 

摘    要 

本文主要探討穩定非線性非時變輸入仿射系統之平衡化處理。吾人首先利用對局理論以及參數

最佳化技巧計算此類系統之 Hankel範數，並基於 Lagrange 乘數之連續性建構其計算方法，以取代

求解一組偏微分方程之作法。最後，吾人推導此系統之平衡化實現之演算法則步驟。文中舉例說明

Hankel範數之計算過程及平衡化之作法。 

 
關鍵詞：Hankel範數，非線性系統，對局理論，參數最佳化，平衡化處理。 
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