Tunghai Science Vol. 1: 19-48 19
July, 1999

Balanced Realization for Stable Nonlinear
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Abstract

In this paper, we are concerned with the balancing for stable nonlinear time invariant input-affine sys-
tem. Firstly, the system’s Hankel norm is computed via game theoretical approach incorporating with the
parameter optimization technique. This computation algorithm is derived based on the continuity of the
costate vector at present time, which leads to a benefit to avoid solving the controllability and observability
functions through a set of partial differential equations. Afterward, the balanced realization is conducted.
Certain numerical examples are used to demonstrate the computational technique for Hankel norm and
balanced realization.
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1 Introduction

In many engineering applications, processes are described by complex models which are diffi-
cult to analyze and difficult to control. Reduction of the order of the model may overcome some of
these difficulties, but it is quite possible that model reduction incurs a significant loss of accuracy.
Therefore, the system has to be analyzed in a manner that is useful for the application purpose.
Simplification of the model based on this analysis usually results in amodel if lower complexity
whichis easier to handle, and in a corresponding simplification of synthesis proceduresfor control
and filtering problems. Furthermore, the simplification decreases the computational effort. Every
application has its own demands, and different model reduction methods have different properties.
For example, we refer to van Woerkom [18], where a survey of order reduction approaches for
flexible spacecraft dynamicsis given.

For similar reasons, it is also desirable to have methods available for designing lower-order
controllersfor high-order systems. The implementation of lower-order controller is simpler, since
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there are fewer things to go wrong in the hardware or bugs to fix in the software, they are easy
to understand, an the computational requirements are lower. Controller reduction methods may
be divided into a direct and indirect class. The direct methods are based on some optimization or
other procedure by which lower-order controllersis obtained, and the indirect methods rely upon
the higher-order controller which isfirst found, and then simplified to alower-order controller (see
e.g. Andersonand Liu [3]).

In practice, model reduction approximation is often based on trial and error methods, knowl-
edge about the physical properties of the system, or other intuitive methods. Sincethisisnot every
satisfying (it is for instance for obvious reasons better to obtain immediately the approximation
that is the best from an analysis and control purpose point of view), formalization of model reduc-
tion has been studied by a number of people. For instance, Glover [5] investigated the optimality
of model approximations in the Hankel norm, and gave a formal characterization of all optimal
Hankel norm approximations.

Moore[10] introduced the balancing for stable minimal linear systems. The balancing method
offers a tool to measure the contribution of the different state components to the past input and
future output energy of the system, which are measures of controllability and observability. This
analysis yield a methodology for model reduction. Since its introduction, balancing theory for
stable linear systems has been formalized in several directions. Balancing as a model reduction
method has been formalized by Glover [5], and Enns [4], who obtained an upper-bound for the
error in the Hankel and L* norm, respectively. Furthermore, open-loop balancing theory has been
generalized to abalancing method for unstablelinear systems(e.g. Meyer [8], Ober and McFarlane
[12]), a balancing method for mechanical system (e.g. Van der Schaft and Oeloff [17]), and to
closed-loop balancing methods (e.g. Jonckheere and Silverman [6], Opdenacker and Jonckheere
[13], Mustafa and Glover [11]).

The Hankel norm is defined as the supremum of the ratio of the future output energy to the
minimal input control energy and it has the same value as the ratio of the controllability function
to the observahility function. Hankel norm approximation method is one of the most popular
approach to find a suitable approximation for a given high-order model, which is a crucial issue
in the controller design process. The key step in Hankel norm model reduction is to find the
balanced realization of the system. Hence, balancing theory is closely related to Hankel norm
approximation. Hankel norm model reduction in state-space approach and in frequency-domain
approach has been addressed in many literatures. Readers have interested in thistopic can refer to
Scherpen [16] and the referencestherein.

In this study, we are concerned with the balancing for nonlinear system. Firstly, the Hankel
norm of nonlinear, time-invariant systemsis computed through game theory together with parame-
ter optimization technique which can avoid to solve a set of partial differential equations proposed
by Scherpen [16]. Afterward, we consider the balanced realization for stable nonlinear system. In
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Scherpen [16], the Morse lemma was used to guarantee the existence of the coordinate transfor-
mation such that Lemma 4.2 in this paper holds, but the method to find this transformation is not
provided. Here, the construction of this transformation is derived.

Thispaper is organized asfollows. In section 2, we summary certain matrix cal culus and some
important definitions and lemmas for later use. The computation algorithm for the Hankel norm
of nonlinear input-affine system is then established in section 3 and we also demonstrates that the
calculation of the Hankel norm of alinear system can be treated as a special case of the nonlinear
system. Section 4 is devoted to the construction of balanced realization for the nonlinear system.
Finally, some numerical examples are used to illustrate this analytic computation of nonlinear
Hankel norm in section 5. In section 6, some concluding remarks are made.

2 Mathematical preliminary

In this section, we summarize some important mathematical resultsincluding matrix calculus.
A useful form of partitioned matrix is obtained by defining the Kronecker product of two matrices
A= [aj] € R™" and B = [bjj] € RP*9 by

apB apB - anB
axB axB --- axB

A®B=[aB] = . . . (21)
amB amwB --- amB

Thus A® B isan mp x ng matrix and is partitioned into the mn blocks shownin (2.1).

The word smooth and differentiable will be used interchangeably to mean differentiable of
classC™.

Letx=[x1 X -+ %] € R" beavector, s(x) € R beascalar rea-valuefunction, and f(x) € R™
be a vector field, defined on an open subset W of R". We describe now the differential operation
involving these real -value functions. The gradient of s with respect to x is the column vector

Js

X1

A0S _ | r_(9s\ _d's

Cox | ] s"_<ax - oX 22)
s
oXn

The Hessian of s with respect to x is the second derivative

A 8_25 [ 0%
S 0X2 | 9%0X]



22

whichisasymmetric n x n matrix. The Jacobian of f with respect to x isthe m x n matrix

o oaoof _rat of o of

T x T ox ox 0Xn
o ofr 0 9fy
X1 X2 Xn
o . 9

— aXl aX2 aXn (2 3)

fm  Ifm  Ifm
X1 X2 %n

We shall use the shorthand notation
e () e
And the chain ruleis denoted by

d ) B T
5((sf) = &(fs) =sfy+ fs;

Sometime, we use a% to denote the differential operator, i.e.

B 9 9 01"

Lemma 2.1 Let L be a smooth function in a convex neighborhood W of 0 in R", with L(0) = 0.
Then

M=

L(X1,X2, ... ,%n) = D> Xi@i(X1,X2, ... ,%n)

i=1

for some suitable smooth function a; defined on W, with a;(0) = 3—)'5 (0).

Proof: SeelLemmaz2.1 of Milnor(1969). O

From thislemma, if welet

ai(x)
A = | =
an(X)
then, the function L can be expressed as
L(x) = A(X)x

with A(0) = % (0).
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Definition 2.2 The tangent space of a smooth manifold M at a point p will be denoted by TM . If
g: M — N isasmooth map with g(p) = g, then the induced linear map of tangent spaces will be
denoted by g.. : TMp — TNy

Definition 2.3 Let f be a smooth real valued function on a manifold M. A point p is called a
critical point of f if

fx(p) =0

where x denotes a local coordinate systemin a neighborhood of U of p. The real number f(p) is
called a critical values. Moreover, a critical point p of f is called non-degenerateif the matrix

L
T axax;

isnonsingular.

Definition 2.4 Let p be a critical point of f. The Hessian of f at p is a symmetric bilinear
functional, f..., on TM, which is defined by

0°f

n

i,j=1
where (X1,X2,... ,Xn) isthelocal coordinate system, and v and w are elements of TM, given by

L9 L0
v_i;a; 3, w=3 b5~

with g and b;j are constant functions.

Definition 2.5 The index of a bilinear functional H, on a vector field V, is defined to be the
maximal dimension of a subspace of V on which H is negative definite; the nullity isthe dimension
of the null-space, i.e. the subspace consisting of all v € V such that H(v,w) = O for everyw € V.

Lemma 2.6 [Lemmaof Morse] Let p be non-degeneratecritical point for f. Then thereisalocal
coordinate system (y1,Y2,--.,Yn) in @ neighborhood U of p with y;(p) = O for all i and such that
the identity

f(x) = f(p) = (Y)? =+ = () + (Var)*+ -+ (Yn)?
holds throughout U, where A istheindex of f at p.

Proof: See Lemma 2.2 of Milnor(1969). m|



24

Lemma 2.7 If there exists a neighborhood V of 0 where the number of distinct eigenvalues of
M(x) is constant for x € V, then onV the eigenvalues A;(x), i = 1,2,... ,n, are smooth functions
of x, aswell as the associated eigenvectors.

Proof: Followsfrom Theorem 5.13ain Kato(1982). O

3 Computation of Hankel norm of nonlinear system

Consider asmooth, i.e. C*, nonlinear input-affine system of the form

Xt) = f(x()+g(x(t)ut), x(0)=xo (3.1a)
yt) = hix®) (3.1b)

with t € (—oo,+o0), U(t) = [ur(t),Uz(t),... ,um(t)]" € R™, y(t) = [ya(t),y2(t),...,Yp(t)]" € RP,
andx(t) = [x1(t),%2(t),. .. ,Xa(t)]" arelocal coordinatesfor asmooth state space manifold denoted
by M. Furthermore, f,g1,02,... ,gm are smooth vector fields on M, isomorphically embedded in
R", where g = [01,02, -+ - ,Om], and h = [hy,hy,... ,hp]T, hi(X) € R is the smooth output map of
the system. Without loss of generality, we assume that the system has an equilibriumin O, i.e.
f(0) =0and h(0) = 0.

Remark 3.1 The function g(x) may have the following component form

011 912 -+ Oim

021 922 -+ Oom
gX)=[01 92 -~ Om| =

Ot On2 -+ Omm

Assume the solution of the system (3.1a) is

X(t) = o(t,to, %o, U), @(to,to, X0, U) = Xo

under the influence of the control input function u. Then we can define the system’s reachability
and observability as following:

Definition 3.2 [van der Schaft(1992)]

1. Thesystem (4) is reachable from xo if for any X € M there existsat > 0, and an input u such
that X = ¢({,to, Xo, ).
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2. The system (4) is zero-state observable if u= 0, y = 0 implies x(t) = 0, i.e. for all x e M,
h(o(f,to,Xo,u)) =0, for all t > tg = o(f,to,Xo,u) = 0, for all t > to.

3. The system (4) is locally zero-state observable at 0, if there exists a neighborhood W C M
of 0 such that for all x € W, h(¢(f,to,xo,u)) =0, for all t > to = ¢(f,to,%o,u) = 0, for all
t > to.

3.1 The controllability function and observability function

Define the controllability and obeservability functions, L¢(xg) and Lo(xo), respectively, of the
nonlinear system (3.1) as:

Le(x(t)) £ mizn % /_t U@ Tu(r) de (3.2)
X(—e0)=0
L) 2 5 [ yv0Tym ¢ D =0,t << ) (33)

where2 £ L?((—e»,0]). Obviously, these functions do not necessarily exit, i.e. are not necessar-
ily finite. In particular, Lc(Xp) may beinfiniteif the state xo cannot be asymptotically reached form
0in backward time, i.e. there exists no input u € L2 such that the system state x(t) is transferred
from the rest x(—<o) = 0 to the current state x(0) = Xo and the function Ly (Xp) may also beinfinite
if the system is unstable. Also, we observe that L(0) = 0 and L,(0) = O due to the reason that
when xo = 0, thereis no input needed to drive the system state x(t) from arest to arest and hence
zero system output will be generated.

Assumptions: [Scherpen(1994)] In order to have meaningful derivationsin the rest of this paper,
we make the following standing assumptions:

1. f(x) isasymptotically stable on some convex neighborhoodW C M of 0.
2. Thesystem is zero-state observable on W.
3. Lc and L, exist and are smooth on W.

2 2
4. £52(0) > 0and $2(0) > 0

3.2 Variational approach

If the system state x(t) isinitialy relaxed in the infinitely remote pass, i.e. limi_,_..X(t) = 0, we
can denote the solution of the system (3.1a) in asimpler form as

Xt) =o(t,u),  O(—e,u)=0 (34)
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under control by the input function u.
Based on the assumptions , we define the Hankel norm of this nonlinear system as

Definition 3.3 The Hankel norm of the nonlinear input-affine system G is defined as

A Mz
IGllH = sup 7——
uel?2 ||U||L%

u#£0

(35)

where L2 2 L2([0, +0)),

1

i 2 [ oo o] i 2 [ worwo a

Let the collection of al u e L2 such that the current state Xo can be reachable from rest
X(—eo) = 0 be denoted by Uy, i.e.

Uo = {u€ L2|p(0,u) = X0}, (3.6)

and hence, xg must belong to the reachable set of 0, i.e. xg € W. Thus we have the following
simple theorem:

Theorem 3.4 Suppose the nonlinear system G satisfies the standing assumptions, then

IG||H = sup H(Xo) (3.7
XpEW
X070
where
IVl 2
=m + 3.8
H(Xo X e (3.8)

Proof: Sincethe controllability function L¢(Xg) of the system G exists, henceUg is nonempty and
thereexistsu € L2 such that the trajectory of x transfers from x(—eo) = 0to x(0) = xo for arbitrary
Xo. Similarly, the observability function Lo(xo)) exists. Thereforewe can expressthe Hankel norm
of thesystem G in (3.5) as
1yl 2
1G] = sup max

xgew U€Uo HUHLE
Xo#0

for agiven xo, then after defining (o) as given by (3.8), the desired result is followed. |

Remark 3.5 The computation of ||G|| can be donein two sequential steps as follows:
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Step 1: For agiven nonzero Xo € W, find p(Xo).
Step 2: Find the supremum of p(xo) for al xp € W.
Suppose v is an upper bound of pi(Xg), then
P(x0) <V ifandonlyif  ?||ul% — ||y||fi >0 VYueUp (3.9)

Let v, be the maximal value of p(xp), then there exists the optimal output function y.. and the
control input function u,. satisfying the following equation:

2
Iy-12,

]2

V=1 (%0) = (3.10)

Therefore, for any given xg € W, the computation of p(Xo) is equivaent to solve the following
minimal energy problem:

Given
= f+gu, X(0) =0, X(—==) =0
— h(x)
Find
EQLQ{J(x(t),u(t)) . Y—Zz/iu dt——/ y(t) } (3.11)

The associated the Hamiltonian function for this minimal problemis
T T ; e
H(x u,)) = Su u+?» (f(x) +9(x)u) !f t € (—oo,0]
ATE(x) — 3h(x) Th(x) if te[0,e)
where A(t), the Lagrange multiplier, is a continuous function and it must satisfy the condition
A(—e0) = A(e0) = 0. Since the Hamiltoninan function of dynamic system must satisfy

dH _9H | O, OH, My oM
d ot  9x ! ot

along the optimal trajectory (X, Uy, A.), and now our system istime-invariant, i.e. a—H = 0. There-
fore the Hamiltonian function along the optimal trajectory is constant, i.e.

H (X, U, A ) =0 (312

due to the condition for A(—e<) = A(e0) = 0.
The necessary condition for this extremal problem is computed as follows:
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(1) whent € (—o,0]:
The optimal control law u, satisfies %—ﬂ =0, and this gives

Yu.+9x) A =0 or u*:—y—]ég(x)Tk* (3.13)
Since
oATg(x)u agij (X)
A S/ A
ox Z;' ox
a%li((X) }\'Iaglj uj
agij%x) A agl]% )
— a)(2 _ | BXZ J
= XM T lu=2X|
| ] . | ] .
e L
= ( ®7J)(3® yu= (I ®uT)(i® A
— n aX g - n ax g
where I, denotes an n x nidentity matrix, then the adjoint equation A=— 5% becomes
h= - Lot L ogT (3.14)

Hence we can consider A, as an explicit function of x. Since from (3.1a) and (3.15)

aThdx  aTA 1 ;
e = e (10— 500"

and, after some algebraic operator, we have the following equation for the optimal costate
vector:

% (f(x)Tx_ Ziygﬂg(x)g(x)Tk> ~0

(%)

This leads to the same equation obtained by using the fact that the Hamiltonian function
along the optimal trgjectory is constant and equal to zero. Let the solution of (3.13) bein
theform

—PP_(x(t)) with®¥_(0)=0 (3.15)
which satisfies the requirement A(—eo) = A(X(—)) = 0 and the function ¥ _(x) satisfies
the following equation:;

Y TH00+ 3% (9799 (9 =0 (3.16
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The substitution of (3.16) into (3.13) yields
U, = +g(x) "W (x) (3.17)
Thus (3.18), for the optimal state x.(t), becomes
x= f(x) +9()9(x) T¥-(x) (3.18)

In order to have a stable solution, we need that — ( f(x) + g(x)g(x) TW_(x)) isasymptotically
stable on W. Let the solution of this equation be

X(t) = D_(t; %) with®_(—e0;Xp) =0 (3.19)

Itisnoted that ®_(0;x) hasfixed point at X = Xg and @ _ (—oo; X) = Ofor al xe W. Therefore,
the optimal control input is

Us(t) = g(@- (t,%0)) TP (P (t; Xo0)) (3.20)
and optimal costate vector is
A (t) = =Y (P_(t;%0)) (3.21)
Thus

A (0) = =YY~ (%) (3.22)

(1) whent € [0,):
Since no control will be input to the system, the optimal control law isu.(t) = 0. The state
equation becomes as

X(t) =109, yx)=h(x) (323

Since f(x) is asymptoticaly stable on W, the explicit form of the optimal state vector may
take the form

X.(t) = @1 (t;x0)  With @, (eo;%0) =0 (3.24)
The optimal output is
Y:(t) = h(®(t;x0)) (3.25)

The corresponding adjoint equation gives

: o' f o'h
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Using the similar idea to solve the costate vector for t € (—e,0), we may consider A, as an
explicit function of x. and since

X—%— % Td_x_aT_k(X)
Tdt o \ox/ dt  ox

then it follows

a% (f(x)Tx— %h(x)Th(x)> =0

Xy

Thisisthe same as the equation given by the fact of zero-value Hamiltonian function along
the optimal trajectory. Let the solution of the adjoint equation bein the form

Ao(t) = A (X(t)) = =P (x(t)) with ¥,(0)=0 (3.26)
with A(e=) = 0, and then the function ¥ ;. (x) must satisfy
Y, (x)7f(x) + :—Zlh(x)Th(x) =0 (3.27)
Dueto the continuity of A, att = 0, we have

YY_(x0) = ¥4 (%) (3.28)

where vy, is the corresponding optimal value of p(xp). Multiplying the both sides of (3.28) with
nonzero vector Xg, one obtains

Ty
Therefore, from (3.10) one obtains
S
1P (x0) = 2%&3 (330)

Thesufficient condition for thisminimal problemisgivenin the book of Athansand Falb(1966)
or Anderson and Moor(1990), and it requires the following matrix

20 P

ou? dudX

P P
oxou  ox2

to be semipositive along the optimal trajectory (. (t),u.(t),A.(t)). Or equivaently, the optimal
trajectory must give the cost functional J to beminimal , i.e.

JX(t),u(t)) = I(x«(1),u(t))  Vu(t) # u.(t)

It is noted that the following simple lemmaholds
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Lemma 3.6
Lo(X0) _ %§'¥+(%0)
L0o) () 339
Proof: The minimal value of the cost function J(x.,u.) is given by
0 oo
Jxu) = min 2 o | yoTvw,
= Yfl—c(xo) —Lo(x0) =0,
or equivalently,
_ Lo(x)
,Yf  Le(xo) (332
By (3.29) and (3.32), the equality in (3.31) holds. |
Remark 3.7 Substituting (3.19) into (3.2), we obtain
0
La) = 5 [ =007 g0g P (9t
0
= [ (P70 + Y- (9T g0g00 TP (o)t (by (3.16)
%o
=/ Y_(x)Tdx (by (3.18)
hence,
ol _
5200) =¥ (%0) (3:39

According to assumptions that L. exists and %(0) > 0, it can be shown that have L¢(x) >
0, V x(# 0) € W (see Theorem 3.1.8, Scherpen(1994)).

Remark 3.8 From (3.3) it follows
Lo(o) = % /Omh(x)Th(x)dt
- /O TwLTEXd  (by (3.27))
- / "W, (9Tdx  (by (3.23))
X0
Therefore

5 %0) = ¥+ (%0) (3.34)
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Similarly, with assumptionsthat this systemislocally zero-state observable, L , existsand a;)'('z" (0) >

0, hence, it can be provethat Lo(X) > 0, V x(# 0) € W (see Theorem 3.1.12, Scherpen(1994)).

The following theorem has been derived in Scherpen(1994) (Theorem 3.1.2 and 3.1.3) and we
provide an alternative proof here.

Theorem 3.9 Assumethat f(X) is asymptotically stable on a neighborhood W of 0. L, exists and
issmooth on W if and only if L is the unique smooth solution of

"L, 1
=09+ Eh(x)Th(x) =0, Lo(0)=0, (3.35)

for all x € W. Furthermore L. exists and is smooth on W (and thus the minimum in (3.11) is
obtained) if and only if L is the unique solution of

0TL¢ 197Lc T oLc
S 00+ 575 2909 =

=0, Le(0)=0, (3.36)

for all x e W, such that —(f(x) + g(x)g(x)T%) is asymptotically stableon W

Proof:

Lo Part: Supposethat f(x) isasymptotically stable on W, then the solution x of x(t) = f(x(t)) is
stable and lim;_,.. x(t) = 0. Since

L) = 5 [ yo Ty
_ % /tooh(x(t))Th(x(t))dt by (3.1b)
o T
= | (%h(x)Th(x)Jr%(f(x)—X))dt

= /1 T aTLo 0 aTLo
/t (Eh(x) h(x) + f(x)) dt — /X(t) 2

) T
/t (aa)lzo f(x)+ %h(x)Th(x)> dt — Lo(0) + Lo(X(t))

hence, the L, exists and is smooth if and only if L, is the unique smooth solution of (3.35).
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Lc Part : Since

% /j u®)Tut)dt =

t /9L 10TL¢ T oLc Xt 9T Le
_/_w< £+ 5 =299 x)dw/o _Cax

Thus, we have

Le(x(t)) = min—/_t u(t) Tu(t)dt

= {%/_; (“_ g(X)T%y (U— Q(X)T%> dt
_[m <%f(x) - %%Q(X)Q(X)T%> dt} +Le(X(t)) — L(0)

Hence L. exists and is smooth if and only if L. is the unique smooth solution of (3.36)
providing the the system

x(t) = f(x(t)) + g(x)g(X)T%

is antistable, or equivalently, —(f(x) +g(x)g(x) " %) isasymptotically stable onW.

Theorem 3.10 Assume that f(x) and —(f(x) +g(X)g(x) "¥_(x)) are asymptotically stable on a
neighborhood W of 0, and ¥ 4 (x), W¥_(X) are the unique smooth solutions of

Y, (X)) f(x) + %h(x)Th(x) =0, ¥.(0)=0, (3.37)
and
Yo(x)Tf(x)+ %‘I’, ) Tg(x)g(x)™¥_(x) =0, ¥_(0)=0, (3.38)

for all x € W, respectively. Then the Hankel normof G, ||G||H, is

XT‘I' (}( )
H HH XOE\FI)V X()T"I"f (XO) ( )



which is an one-parameter optimization problemwith xo € W and the optimal state x§ must satisfy

d /X ¥i(x) )
— (20 =+ =0 3.40
with constraint
& Xg‘P+ (Xo) )
— | =——= <0 341

If the optimal state xg, obtained from (3.40), is not located insideW or does not satisfy (3.41), then
other numerical methods should be used to solve this one-parameter optimization problem (3.39).

Proof: Since ¥ (x) = %2 and ¥_(x) = %< and due to the assumption that f(x) and —(f (x) +
g(x)g(x) "W _(x)) are asymptotically stable on W, the existence of ¥, (x) and ¥ (x) are followed
from Theorem 3.9 and they are the smooth, unique solutions of (3.37) and (3.38), respectively.
Then by Theorem 3.4 and Lemma 3.6, the Hankel norm of the system given by (3.39) isfollowed.
Hence, the optimal initial state, x5 must satisfy (3.40) and the constraint (3.41) such that the quan-
tity ;X:}z*—gg at x5 has global supremum. If the optimal state x; of (3.40) does not satisfy the
constraint (3.41) or is not located inside W, the supremum cal cul ation of (3.39) should be solved

by using other optimization techniques. |

From Theorem 3.10, we see that the method for computing the Hankel norm of the nonlinear
system is much more difficult than that for the linear case.

Example 3.11 Consider asimple one-dimensional nonlinear system

G x = f(x)+9(x)u (e R

y = hx

Suppose this system is asymptotically stable about the equilibrium point 0, and it is weakly con-
trollable and locally zero-state observable, then f(x) # Ofor al x # 0inW of 0. Thus by Theorem
3.10, thefunctions ¥ is given

_ PX
0= =275
Similarly, the function ¥ _ is
__2f(
="
Therefore
2 _ o X0 Pe0) _ PP(x0)g%(xp)
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where x;, the maximum xo, satisfies

hx (%)) 9 0) +IP00)9x(%0)900) — 1?00)9%0) fx(x0) _

212(x5) 213(xp)
or
hx(xg) = 9x(Xp) B fx(xg) . " " "
and
h?(x5)9%(%p) (hxx(XZS) ) L 9ul) %00 Fx(%) . ff(XZS)) <0
212(x) h(xg)  P(xg)  alxg)  @?0g)  FOg)  F2(x)

After substituting (3.43), the above equation becomes
ha(X0) | Ga(X0) () |, ,Px(%0) 9x(%)

+ - +
h(xp) ~ 90 fOo)  hig) 90x)

If the optimal state xj, obtained through (3.43), is not located inside W, we can use other
numerical methods to solve this one-parameter optimization problem.

3.3 Special case: linear system

In this section, we would like to compute the Hankel norm of alinear, time-invariant system using
Theorem 3.10. Let us consider a stable, linear, time-invariant system as given by

X = Ax+Bu
y = Cx

where A€ R™", B R™™ and C € RP*" and Reki(A) < 0. Suppose this system is controllable
and observable. Therefore, we takeW = R. Substituting f(x) = Ax, g(x) = B and h(x) = Cx into
Theorem 3.10, we have

1
¥, (x) T Ax+ ExTcT(:x =0

and
Y_(x)TAx+ %‘P_(X)TBBT‘{’_ (x) =0
Equivalently,
Yo () TAX+XTATY, (x) +X"CTCx =0
and

¥_ ()T AX+XTATW_ () + W_(x)"BBTW_(x) =0
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Let P and Q denote the positive controllability and observability gramians, respectively, i.e. they

are the solutions of the following Lyapunov equations:

PAT +AP+BBT = 0
QA+ATQ+C'C =
Then the functions ¥ _ (x) and ¥ (x) are solved by
Y_(x) =P Ix and¥,(x) =Qx
Hence the Hankel norm is given by
X} Q0

G| = sup
IGIIA P TP

and the optimal state xj must satisfy the condition

d Qo _
dxo x[P~1x

or
T

, Q0% P~x0 — P~1xox{ Qxo

() P~1x0)2 =0

Let

then (3.45) becomes

Multiplication of both side with P leads to

)| <o
X0=Xox

(3.44)

(3.45)

(3.46)

(3.47)

o = PO
i.e. o isthe singular value of the matrix PQ and xg is the corresponding eigenvector and satisfies
the constraint
& 0 _,d (0 PG
dGXP %0 dxo \xgP X0 (P x0)?
Since

dx

EP*Xoxg Qo =P I Qxo+ P %o Q = P~ Ix] Qxo + Qxox{ P2
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the above constraint can be deduced as

Q P IxJQxo  4Qxox]P~1 4P IxoxIP~1x] Qxo

XP o (P x0)2  (x)P1x0)? (X Px0)® [y, <

and, after using (3.46), further simplification leads to

Q _ Gprl
%P

or Q — 62P~! must be negative definitei.e. for all x # 0

<0

X" Qx 2

XTP Ix (3:48)

Hence a suitable o2, satisfying (3.47), must be an upper bound of the function p?(xo). Thus the
Hankel norm of thissystemis

TQXO TG-ZP_]'XO
Gl = sp1P(x0) = sup = = sp S 2 =maxaf =of (249

by choosing xg to be the ith eigenvector. Therefore the Hankel normis the maximal singular value
of the matrix PQ, denoted by 6 max(PQ) which is the same as the result of Glover(1984).

4 Balanced realization

In this section, we will discuss the algorithm to perform the balanced realization for nonlinear
system.

Definition 4.1 A nonlinear systemisin balanced form (or simple balanced) if there exists a local
coordinate system z on the neighborhood U of O such that the controllability and observability
functions are of the form

LC(O,---,O,Zj,O,---,O) = G(zi)ilziz

NI =N

Lo(0,...,0,7,0,...,0) =
where oj’sare in fact the Hankel singular values.

We need the following Lemma:
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Lemma 4.2 There exists a coordinate transformation x = ¢(X), $(0) = 0 (defined on a neigh-
borhood W of 0), such that in the new coordinate X = q)—l(x) the functions L; and Lo are of the
form

XT

>

Le(%) Le(0(%)) = 5X°%, (4.1)

Lo(0(R) = 58 M(R)%, (42)

>
= NP

Lo(X)

where M(X) isan n x n symmetric positive-definite matrix such that it entries are smooth functions
of X on 6~H(W).

Proof: SincelL(0)=0and % (0) =0, by applying Lemma 2.1 twice, we have

Le(X) = EXT We(x) X where W (0) = %(0) (4-3)

By Lemma 2.7, we know that there exists a neighborhood W of 0 such that the eigenvalues of
W(x) and the associated normalized eigenvectors are smooth functions of x. This implies that
W;(x) is smoothly diagonalizable on W. Indeed, we can write

We(x) = TC(X)AC(X)TCT (x) where Ac(x) =diag(Aci(X),- .. ,Aen(X))

Here, Aq(X) > 0,i = 1,...,n are the eigenvalues of W;(x) and T¢(X) is the corresponding orthog-
onal matrix of the normalized eigenvectors, i.e. T, (X)Te(X) = In, X € W. The non-negativity of
Aqi is due to Assumption 4 that Lc(x) > 0. Define a new coordinate transformation X = v(x) =

Ac(X) %TCT (X)x. In these coordinate, we can rewrite (4.3) as:
2

Le(vi(®) = 1>~<T>z,

Lo(®) ;

where € W £ v(W). Similarly, Lo can be transformed into

Lo(%) 2 Lo(v"1(%))  with Lo(0) = O, %(0) —0onW
and, after applying Lemma 2.1 twice, we get
Lo(X) = %)?TM(X)Y(, M(0) =0 (4.4)
Thus, let
o=vl or 01X =Ac(X)2TT (X x (4.5)

then, x = ¢(X) and W = ¢—1(W). Thus, the lemmais proved. i
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Thislemmahas been proved in Scherpen (1994) by using Lemmaof Moorse (see Lemma2.6),
and it does not provide any information about the construction of the coordinate transformation ¢.
In our proof, although the neighborhood W may be smaller than that obtained by using Lemma of
Moorse, but we can construct the coordinate transformation ¢, which means that the balancing for
nonlinear system is realizable.

Theorem 4.3 Consider the nonlinear system G and the condition of Lemma 2.7 is fulfilled. On a
neighborhood W of 0 there exists a coordinate transformation x = y(2z), y(0) = 0, such that in the
new coordinate z € V := y~1(W) the function L is of the form

Le(2 = Le(y(2) = 2"z, (4.6)

Lo(2) = Lo(w(2) = 57" 2 @7

Here, 11(2) > --- > tn(2) > 0 are smooth functions of z, called the singular value functions of the
system.

Proof: By Lemma4.2, we can express the functions L . and L, as given by (4.1) and (4.2) on W
via coordinate transformation x = ¢(X). By Lemma 2.7, we know that there exists a neighborhood
W of 0, such that the eigenvalues of M(X) and the associated normalized eigenvectors are smooth
functions of X. This implies that M(X) is smoothly diagonalizable on W. It is noted that the
neighborhood ¢(W) may not be the same as the W in Lemma 4.2, we till use W to denote their
intersection.

Indeed, we can write

M(X) = To(RAc(RTS (X) where Ao(X) = diag(ot(%),. .. ,Aon(X))

Here, Aoi(X) > 0,i = 1,... ,narethe eigenvalues of W;(x) and T;(x) is the corresponding orthogo-
nal matrix of the normalized eigenvectors, i.e. T (%) To(X) = In, X € W. Thenon-negativity of A; is
due to Assumption 4 that Lo(X) > 0. Define anew coordinate transformation Z = w(X) = T (%)X.
In these coordinate, we can rewrite (4.1) and (4.2) as:

N
N

Lew '(2) =

Low1(2) = ZZ'Ac9zZ

NI NI

where Ao(2) £ Ao(W () has eigenvalues Ao (2) 2 hoi (W 1(2)). Then, we can transfer Ao(2) by
permutation matrix such that it eigenvaluesare arranged in the order of decreasing magnitude. Let
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S be the corresponding permutation matrix with STS= I,. Again, we can apply a new coordinate
transformation z= £(2) 2 g7 such that in these coordi nate, the diagonal elements of STA(Z)Sare
in the order of decreasing magnitude. We denote this matrix as A(z) = diag(t1(2),... ,Ta(2)) with
11(2) > --- > tn(2) > 0. Thus, let

y=dow 1ot (4.8)

, then the theorem is proved. a

Finally, the realization of the functions Lc(z) and L,(2) into balanced form can be done ac-
cording to the method proposed by Scherpen (1994). It is summarized as follows. We take a
smooth transformationZ = ni(z) :=1(0,...,0,%,0,... ,0)711z, i=1,...,n,andhencez=n(z) =
M1(z), ... ,Mn(z0)]T onZeV :=n(V). Since Lo(2) > 0, we havethat 1;(0,... ,0,%,0,...,0) > 0,
i=1,...,n forzeV,z# 0. Defineoi(%) = 1(0,...,0m %(%),0,...,0)2, Lc(2) := Lc(n~1(2))
and Lo(2) :=Lo(m~%(2)). Then,

o1(2)7t 0
L(? = %zT A (4.9)
0 on(Zn)?
01(z1) 11 (2) 0
(2 = %zT A (4.10)
0 Gn(Z) 'n(2)

where 1;(2) 2 7i(n~1(2). This meansthat at the coordinate axes we have

. i 1 . 1.
[c(©0,..,03,0,....0) = 3o(@)'%,
. i 1 .s
[6(0,...,0,%,0,...,0) = Ecs(z);?

Hence, the controllability and observability functions are in the balanced form.
Now, consider the system G after the coordinate transformation x = (2) 2 yon~! where y
isgivenin (4.8):

Z =

f(2)+§(2)u (4.12)
y = h

(2. (4.12)
Algorithm 41 (Balanced Realization Algorithm)
1) Solve(3.35) and (3.36) for L¢(x) and Lo(X).

2) ComputeW(x) according to (4.3).
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3) DecomposeWe(X) = TS (X) Ac(X) Te(X) where A¢(X) is a diagonal matrix formed by the eigen-
vectors of W;(x) and T¢(X) is orthogonal matrix.

4) Find the function ¢ such that ¢ ~1(x) = A¢(X) %Tc(x) X.
5) Compute Lo(X) = Lo(¢(X))
6) Compute M (X) according to (4.4).

7) Decompose M(X) = T (%) Ao(X) To(X) where Ao(X) is a diagonal matrix formed by the eigen-
vectors of M(X) and To(x) is orthogonal matrix.

8) Computew! such that w(%) = TJ (X)X

9) Find the permutation matrix S such that the matrix ST Ao(w~1(s))S has its diagonal elements
arranged in the order of decreasing magnitude.

10) Compute {1 such that {(s) = S's.
11) Compute A(2) = ST Ao(W1({1(2)))Sand its eigenvaluesti(2),i = 1,... ,n.

12) Computen 2 such that n(z) = M1(z1),... ,Mn(zn)]" with itsi-th component
Ni :Ti(oa"' 7072i707"' ,O)%Z

1 -1

13) Formthe coordinate transformation function x =y (2) wherey, = pow 1o 1o

5 Numerical examples

Example 5.1 Consider the following first-order nonlinear system
X = —X++Xu
y = snx

Since f(x) = —X, g(X) = /X, and h(x) = sinx, we know that the linearized model is stable, con-
trollable and observable about the equilibrium (0,0). And it follows that the original system is
asymptotically stable, controllable and zero-state observable. We take

W={xeR0<x<mn}
The substitution of f(x) = —x, g(x) = /X, and h(x) = sinx into (3.49) yields the Hankel norm of
this system
sinxg
2\/%

IGlln =
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where ;) is the solution of

with the constraint
1 COSX;
- * + * o k < 0
4(xp)?  %5Sinxg
which can be reduced to the condition that

A tanxt = 2 < 0
1+ a(xg)2 0 = o= 20

or equivalently, x> 3. The solution is x§ = 1.165561, which belongs to W. Hence the Hankel
norm of the system is found as

|G||n = 0.425621

Example 5.2 Consider the following first-order nonlinear system
X = —xX2+xu
y = s8nx

The unique solution of the x = —x? with x(0) = Xo

X(t) = —2

T 1ttxo

exists over (—eo, — ) U (—5,%). Thusif we take

W={xeR—-n<x<n}
then the equilibrium paint (0,0) is asymptotically stable and this system is zero-state observable.

The substitution of f(x) = —x?, g(x) = x, and h(x) = sinx into (3.49), yields the Hankel norm of
this system

sinxg
29

IGlln =

where x; is the solution of

with the constraint




43
i.e. x5 > 0. Although no explicit x; can be found to satisfy the above conditions, we still can
compute the Hankel norm of the system by

. |sine
IGIIn _m‘z—g 05

The following example is adopted from Example 3.2.8 of Scherpen(1994).
Example 5.3 Consider the following second-order nonlinear system
x = f(x)+g(x)u
y = hix

where the state x is acting on

o[

This system fulfills the assumptions of Section 3 with x = [x1,X2]", u= [u1,Up]" andy = [y1,y2]"
and f,gand h asfollows:

€ R?

(3%, — 4X2)2 < 25}

(0 = [ f0 | 1 [ 625x + 1123 + 552x8xp + 639133 + 2163
] f2(x ~ 625 384x1+ 6257 + 464x3xp + 48%1X5 — 63x3 |
9 = ) (X a3 > L
921 O22 o= \/ 254 7x] 4 48x1X0 — 7X5 J
hx) = 1(X) % 34xl 24%1%0 + 41x2
2(X) 4x1 +3%)2 '
The substitution of f (X ), and h(x) into (3.37), and (3.38) yields
Y_xg) = | ¥, () = 1 | 850x1 + 288x3 — 300x — 252x4x, — 239x1X22 4 84x3
TV e |0 T 625 | —300x; — 84x3 + 1025x, — 239X3%, + 252X1X3 + 288X3

Consequently the Hankel norm of this system is given by

1 850x3 + 144x7 — 600x1 X2 — 168xlxz + 1025x2 239%2x5 + 168x1%3 + 144x3
625 X2 + %3

IGlln =

where x1, X must solve the following equations

2(4%1 + 3x%2) (—3%1 + 4%2) (— 12x3 — 25x; — 36%1X5 + 7X3)
625(x2 + x2)
2(4x1 + 3x2) (—3x1 + 4x%2) (25x1 + 7Xl +36%2 X2+ lZX%)
625(x + X3)2

=0

=0




with the constraint that the Jacobian matrix
1
62502 +x2)%
[ 2(144x8 — 600x3xp + 525x3x3 + 432x5+ | 4(150x4 — 42x8 — 175x3x, — 900x3x5 —
432x3%2 + 1800x1)3 + 336x3x3 — 175x3+ | 378x{x3 + 175x133 — 1054x3X3 + 150x3+
2013x2x3 — 1008x1x5 — 383x9) 378x2x3 + 42x5)

4(150x7 — 42x8 — 175x3%, — 900x3x5— | 2(175x] — 383X + 1800x3%, + 1008x3%2—
378x1X3 + 175x1%3 — 105433+ 525x2X3 + 2013x7x3 — 600X1X3—

I 150x3 + 378x2x3 + 42x5) 336x3x3 + 432x3x4 + 144x5)

is negative definite. Since all the solutions can not satisfy the requirement that the Jacobian matrix

is negative definite, we use the graphical method to analyze the extremal property of the Han-

kel norm inside W. The result shows that the supremum value is found to be located along the

boundary of W, i.e. (3x1 — 4xp)? = 25, therefore the Hankel norm of the system is

IGlln = V2
This result is as same as the value of largest singular value of this system in Example 3.2.8 by
Scherpen(1994).
The integration of W_ and ¥ give us the controllability and observability functions as fol-
lows:

1 1 My1(X) M2(X
Le(X) = =xTx, Lo(X) = =x" () Mz(x) |
2 20 | ma(x) ma(x)
where
m(x) = % (4254 72x2 — 192x1% + 128x3)
12 5 5
m12 (X) = m21 (X) = @ (_25 + 9Xl - 24X1X2 + 16X2)
1
mp(x) = o (1025+ 81x5 — 216x1%p + 144x3)

We see that this system aready has the form of Lemma 4.2, hence, chose the coordinate transfor-
mation as x = y(X) = X and

mll(x) mlz(X)
Moa(X) Maa(x) |

M(X) = M(x) = l
The eigenvalues of M(x) are:

7u1 (X)
Aa(X) = 2.

1 1 2
> (25+ Ox2 — 24x1% + 16x3) = 1+ <§ (31 — 4x2)>
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The neighborhoodV of 0 where the number of distinct eigenvaluesis constant, is
V = {x] (3x1 — 4%)? < 25}

i.e. M(x) < 2for dl x e V. Therefore, the largest eigenvalue for al x € V is Ap(x). The unitary
matrix of eigenvectorsis

We note that the transformation function y(z) = w=1(z) and
W=y (V) =w(V) = {2Z < 1}.
In the new coordinates, the controllability and observability functions becomefor ze W

2 0

Z
0 1+2

1
L@ =572 L@=57

The singular value functionsare t1(2) = 2 and t2(z) = 1+ 2. To bring in balanced form, we need
to define the transformation Z = n(z) asfollows:

and

ZeW:n(W):{ZZE<2%}.

For Z € W, the system is transformed into the following form:

.21 = A+ 212% + U1871‘

5 = -n-B+u/2-V2E+28
yi = 8iz

Yo = V2%

Thisis the balanced realization of the system (4).
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6 Conclusion

The distance between stable and unstable system can be measured by Hankel norm between
them. This paper establish the analytic method to compute the Hankel norm of a nonlinear,
input-affine, time-invariant systems through game-theoretic approach. This computationa method
can be recasted into two sequential steps. solving the minimal energy problem and then an one
parameter-optimization problem. According to the continuity of the costate vector, the Hankel
norm is computed by solving two algebraic equations instead of two partial differential equation
as other paper does. We also show that the Hankel norm computation for the linear time-invariant
system can be regarded as a special case of our results. After all, we derive the algorithm for the
balanced realization of nonlinear input-affine system. Numerical examples for nonlinear input-
affine systems are used to illustrate our computational procedures.
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