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Stabilization for High Order Nonlinear Critical Systems

Chao-Pao, Ho* Che-Hao, Lin*

Abstract

The aim of the thesis is to study the stabilization of the system & = f(x) + bu.
Here the linearization system contains a high order controllable mode. First, by
center manifold theory, we can reduce the dynamics of the given system (higher
order system) to the dynamics of the center manifold system(lower order system).
Second, using normal forms or Lyapunov function, we can find a sufficient condi-
tion such that the center manifold system is locally asymptotically stable. That is,

we can control u(x) such that the given system is stabilized.

Keywords: Nonlinear critical system, Nonlinear feedback, Controllable pair, Cen-

ter manifold, Normal forms.

1 Introduction

We are trying to study the stablization of the nonlinear control system
i = f(x) + bu(a), (1.1)

where x € R”, u € R and b € R”. Without loss of generality, we assume the
origin is a rest point of (1.1). Our main goal is to find, if possible, a smooth input
u(x) such that system (1.1) is asymptotically stable. To change a basis (1.1) is

transformed into

() =05 2 (m) (b )eroe a2

with (Aj11,b1) is a controllable pair. Thus there exists a linear feedback control
u = ka1 + v such that all eigenvalues of A1 + b1k have negative real parts. Hence

the system (1.2) can be written as

y BO)(?J) <w(y,77)>
L) = + ) 1.3
<77> <0 Q U 9(y,m) (13)
where A\(B) = A(A11 + b1k), M(Q) = A(A22) and w((y,n) = biv + O(2).
The system (1.3) is stabilizable by a linear feedback if all eigenvalues of @) have
negative real parts. And, if Q has at least one eigenvalue with positive real parts,

then the system (1.3) can not be stabilized at all [5]. Thus we only study the case

which all eigenvalues of ) have non-positive real parts in the thesis.
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In Aeyels [1], the case of a pair of imaginary eigenvalues (that is, A(Q) = {i, —i})
was treated. In [2], S. Behtash and S. Sastry treated double zero eigenvalues with
nonzero jordan form and pair of imaginary and a simple zero eigenvalues. They
only discuss those systems with one order controllable system (That is, B is scalar).
However, we are trying to study the system with high order controllable system.
(That is, B € My, xm.) In the thesis, the center manifold theorem is introduced in
the section 2. In section 3, we describe the normal forms. The main result is given
in the section 4.

2 Center manifold theorem

Consider the system

y = By +w(y,n), l
(y,m) € R™ x R, (2.1)

n=Qn+g(y,n),

where
w(0,0) =0, Dw(0,0)=0,

9(0,0) =0, Dg(0,0) =0,
all eigenvalues of B have negative real parts and all eigenvalues of () have zero

real parts. Before stating the center manifold theorem, we need the following

definitions.

Definition 2.1 [4] Let B have m (generalized) eigenvectors vi,..., vy, and Q
have 1 (generalized) eigenvectors wy, ..., w;. Then the stable and center subspaces,
(denoted E® and E€), are linear subspaces spanned by {vi, ..., vy} and {wy,...,w}

respectively; that is
E*® = Span{vi,...,um},

E°¢ = Span{wy,...,w;}.

Definition 2.2 [4] A set S is an invariant set for a flow ¢y if S is a subset on
R™ and x € S such that ¢1(x) € S for all t € R.

Definition 2.3 [4] W€(0) is called a center manifold if and only if W¢(0) is an

invariant set and tangent to E€ at 0.

We know that the center manifold is defined by

We={(y,n)ly=h(n), h(0)=Dh(0)=0},

where h is a smooth function defined on some neighborhood U C R of the origin.

Remark 1 W¢(0) is not unique.
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The first result on center manifold is an existence theorem.

Theorem 2.4 [3] There exists a C" center manifold for (2.1). The dynamics of
(2.1) restricted to the center manifold is, for n sufficiently small, given by the
following vector field

n = Qn+g(h(n),n). (2.2)

The dynamics of the system (2.2) near n = 0 determine the dynamics of (2.1) near
(y,m) = (0,0).

Theorem 2.5 [3] If the origin n = 0 of (2.2) is locally asymptotically stable (un-
stable), then the origin of (2.1) is local asymptotically stable (unstable).

We now introduce how h(n) can be calculated, or at least approximated. Sub-
stituting y = h(n) in the second component of (2.1) and using the chain rule, we

obtain

N(h(n)) = Dh(n)[Qh(n) + g(h(n),n)] = Bh(n) —w(h(n),n) =0  (2.3)

with boundary conditions
h(0) = Dh(0) = 0.

Theorem 2.6 [3] If a function ¢(n), with $(0) = Dp(0) = 0, can be found such
that N(¢(n)) = O(|n|P) for some p > 1 as |n| — 0 then it follows that

h(n) = ¢(n) +O(n") as |n| = 0.

Hence the system 1 = Qn+g(h(n),n) is asymptotically stable whenever the system
1= Qn+ g(é(n),n) is asymptotically stable.

3 Normal forms

The center manifold theorem tells us that the dynamics of the system (2.2)
near 1) = 0 determine the dynamics of (2.1) near (y,n) = (0,0). Thus it is enough
to understand the dynamics of the system (2.2) whenever we only restrict our
attention to the flow within the center manifold. For the purpose, we are trying to
simplify the vector field on the center manifold such that it is easily to understand
the dynamics of the center manifold system (2.2). The resulting “simplified” vector

field are called normal forms.

Let Hj be the real vector space of vector fields whose coefficients are homoge-

neous polynomials of degree k. Using the transformation

z=y+p?(y). (3.1)
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We can transform the system

b= Az + fO(x) +--- (3.2)
to

j=Ay+gP@)+-, (3:3)
where ) (y),p®(y) € Hy. Equations (3.1), (3.2) and (3.3) tell us that

Ar+ fP@)+-- = &

9+ D® ()
1+ D@ w)] 4.

That is,

- {r- 06206 - [PePw)]" - }{Ay+Ap D+ 1O+
= Ay+ [4p2(y) - D ()] Ay + FO ()] +-

Hence
9P(y) = Ap? (y) — Dp® ()] Ay + fO (y).
Let Tf) : Hy — Hs define by

T [P W) = 2) - D (1)) 4v.

Theorem 3.1 [4] Let © be a C" system of differential equations with f(0) = 0.
Choose a complement Gy, for R(Tlgk)) in Hy. Then there is an analytic change of
coordinates in a neighborhood of the origin which transforms the system & = f(x)
toy=g(y) = 9P W) +9@ W)+ +9" () + R, with A= gV (y) and g™ (y) € Gy,
for2 <k <r and R, = o(|y|").

Proof. A proof can be found in [4].
Remark 2 (a) If TXC) is nonsingular, then we can take g™ (y) = 0.

(b) If Tlgk) is singular and diagonalizable, then Gy = ker(TXc)).

c) If A is diagonalizable with eigenvalues A1, A2, ..., \n, then 7" s diagonaliz-
() A

able with eigenvalues

{Az—ZajAj | for all ¢ and for all a },
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where a = (al, az,...,an) is a vector of non-negative integers with ay + az +
e ta, = k.

Example 3.1 In equation (3.2), let A = ( (1) _01 ) That is,

i/‘l o 0 -1 T f1
(2)-( ) (2)=(7) 00
where A1 = i, Ay = —i are eigenvalues of A and A is diagonalizable. By Remark
2)

2(c), Tf) is diagonalizable with eigenvalues {3i, —i, —i, —3i,4, —i}. Hence Tjg is
nonsingular. Thus we can take ¢ (y) = 0 by Remark 2(a). That is, we can

(2)=(0 ) () +ow. 55

Furthermore, T is diagonalizable with eigenvalues {4i,2i, —2i, 4i,2i,0,0, —2i}.

transform (3.4) to

Hence Tf’) is singular. We know

3 2 2 3
3 23 2722 21725 2y 0 0
w= g (3)-C5)- (5 (9)-(5) ()

0 0

228 )7\ 2

and we can show that

ker(TIg?’)) = span{( “ > (21 + 23), ( G ) (21 + Z%)}
z9 Z1
That is,

S R N (az1 — bzn) (2 + )
( 22 ) - ( L0 > ( Z2 > - ( (azg + b21)(22 + 22) +0(4). (3.6)
In fact, a is satisfied with the following equation [4]

1
o = 15 (D3 fi+D3 . A+ D2, . fo+ D3 fot+ D2 fi(D2 fi + D2 f1)

- DzlefQ(DglfQ + DngQ) - DglleglfQ + DnglDZQfé] :

4 Main results

Consider the system
T = f(x)+ bu, (4.1)

where z € R, u € R, f: R" — R" is smooth, b € R™ and 0 is a rest point of the
system (4.1) (that is, f(0) = 0). we can rewrite the system (4.1), by changing a

() =(5 ae)(m) (b )erow  ao

basis, into
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with (A11,b1) is a controllable pair. Thus there exists a linear feedback control
u = kx1 -+ v such that all eigenvalues of A;1 + b1k are negative and distinct. Hence

the system (4.2) can be written as

(3) = (0 o) (a)+(5) o+ (hm) (

—ky 0 0 0 Y1 él f_l
0 -k -~ 0 O Yo b2 f2

= | & o ] s e s |
0 o --- 0 Q n 0 g

where —k; € AM(A11 + b1k) and A\(Q) = A(As2). Hence by the Hartman-Grobman
theorem, the system (4.1) is stabilizable by taking a suitable linear feedback if all
eigenvalues of B have negative real parts. And, if B has eigenvalue with positive
real part, then the system (4.1) can not be stabilized at all. Hence we only study

the case with all eigenvalues of () have non-positive real parts.

oF ok
(Notation : In this thesis —- = —f(()) = Df]f)

ok onk
Case I. Q) = 0141

In the case the system (4.3) become

U -k 0 - 0 O Y1 w1
U2 0 —ky -~ 0 O Y2 wo
: = : : : : : + : ; (4.4)
Ym 0 O _km 0 Ym Wm
7 0 0 0 0 n g
where w1 = byv + f1 and w; = l—)—(wl —fi)+ fifori=2,3,--- m. Let
1
(1 hi(n)
Y h
vo| | 2.(77) ’
Ym P ()

where h;(n) = a;n* + O(3) and wy = an?. By (2.3) we have

—kia1n® + an?® + O(3)

2a1m + O(2) by 10%f, 19°f

o 2 e Y JN 2
221 + O(2) . haag” + g = o G+ 5 g HOB)
2am77 + 0(2) 2 Bﬂ 182fl 2 182]?771 2
kmamn” + Bl (a 2 On? )77 + 2 o2 n +0(3)
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That is,
o = k1a1
and
k1b; n
a; = a1 + ¢
% kzbl 1 19
where - -
L b 0°fr  O°fi, .
i = —(——% =23,---,m.
G ok (bl on? on? ) i Il M
‘ . . ., 0%
Theorem 4.1 The system (4.4) is stabilizable by a control law wy = an® if Erch
]

klb 8g
0 and
o Zkblanayz

Proof. By theorem 2.5 and theorem 2.6, we want to show that there exists a

control law w; = an? such that the system

no= Qn+glhi(n), ha(n), -, hm(n),n)

is asymptotically stable. Let V = %772, then

Vo= m

_ 10% 4 ‘ 0%g 1 0%¢g

= 3% (;azanayﬁg,a nt 4+ O(5)
182g 3 kll_)i 829
~ 202" (Zkblana "+ O+ 06)
where
C=cytez++ +li
= C2 C3 Cm 3'817

2

Thus the system (4.4) is unstable whenever # 0. On the other hand, if

82”

g 4 " kib; 9%
=0, = 0
877277 ; kiby Ondy; 70,

then there exists real number a; such that

(that is, V < 0) for all n € N5(0) — {0} and some neighborhood N;(0) at the origin.
Hence the system (4.4) is asymptotically stable whenever w; = an? = —kja1n?,

that is, the system (4.4) is stabilizable by a control law w; = —k1a1n2.



24

Corollary 4.2 Suppose Q is a Jordan form with only one zero eigenvalue and the

other has negative real part. Then the same result as the above theorem is obtained.

Proof. If @ is a Jordan form with only one zero eigenvalue and the other has

negative real part, then (4.3) can be written

0 k0 .- 0
U 0 —ky --- 0
gim | | 0o o —km
¢ 0 0 0
il 0 0 0
where ¢ € R=! and
D,
Q" =
with
A1 O
0 X 1
D; =
0 0 A
0 0 0
or
D; I 0
0 D; I
D, =
0 0
0 0
where
« [ s —t
Dj = < t s
Let
Y1)
Ym
Y: =
¢l
G-1
where

0 O
0 O
0 0
Q* 0
0 0
D
0
0
1
A
0
0
D;I
0 D*

1 w1
Y2 w2
: + : ’
Ym Wm
¢ )\
n g
A<0




By (2.3) we have

o = k1a1
and B
k1b; "
a; = —a Ci,
7 k?zbl 1 )
where

LR 0
Y2k by 02 On?

and ap,4; is a linear combination of

) i=2,3,---,m

0?0920, W,

ar o o
Hence a4 is constant for j =1,2,...,k —1. Let V = %nz, then
Vo= m
10%g 4 " 0%g = 0%g 19%. 4,
- -ZJ _ C ()
where

m k—1
0%g 1 93¢
C =D i+ amijm i+ 575
pat = ono¢;  3!'on

Hence we have the same result as the above theorem.

CaseII.Q:<8 (1)>

For the case the system (4.3) can be written

1 ki -+ 0 00 Y1 w1
: : : : Y2 :
Um | = 0 -+ —kn 0 0 : T wn
m o -~ 0 01 Ym g1
72 0 . 0 00 7 92
where wy = byv + f1 and w; = E—(wl —fi)+ fifori=2,3,--- m. Let
1

Y1 ha(n1,m2)
Y2 ha(m,m2)

Ym hm, (771 ) 772)

O(5)

25
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where hi(n1,m2) = ain? + aismne + a;zni + O(3) and define a control law wy =
an? + Bmnz +m3. By (2.3) we have

—k1(a11mi + ar2mnz + ar3n3) + ang + S +yns + O(3)
b _ _
—ki(azinf + agamn + agzns) + Bﬁ(an% + Bmnz +ym3 — f1) + fa + O(3)
1

b o
—k1(@mnt + amomn + aman3) + 37 (0t + B +m; = fi) + fn + O(3)

by
2a11mn2 + a1ams + O(3)
B 2a21m M2 + azens + O(3)
2am1771772 + am277% + 0(3)
Hence
« ki 0 0 all
ﬁ = 2 /61 0 ai2
0l 0 1 k a3
and
ki 0 0 ;1 l_) « til
2 k0 a;2 Z# B |+ te |,
0 1 ki a;3 1 Y ti3
where ~ ~ ~
W Ph 1
T om?  20n?’
R N
2T by omny | Omny’
b PR 1
BT b, om3  20m3°
Thus
[475]) l_)z kzz 0 0 (0% Cil
a2 = 73 —2k;  kZ 0 B |+ | co
i3 i 2 ki K gl Ci3
B' kilk? 0 0 ail Ci1
= 3 ;63 —2k1k; + 2k? k1k? 0 a2 |+ c2 |,
1R 21{21 — 2](31 ]{222 — klk‘l kilk’ZQ a3 Ci3
where
Ci1 1 k‘? 0 0 til
Cio = ? —Qki k? 0 tig
Ci3 i 2 —k‘i k‘% tig
Theorem 4.3 If
9?92 g Pa

0

o 7 Omdy: ot -
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and
n

bik1 0?
Z ViRl 092 £0,
— brk; OmOy;

then the system (4.5) can be stabilizable by a control law w; = aun% + aromne +

2
ai3n;-

Theorem 4.4 (Invariant Set Theorem) [6] Consider a system & = f(x), with
f continuous, and let V. € C'. Assume that for some | > 0, the region ) =
{z|V(z) <1} and V <0 for all z in Q. Let R be the set of all points within €,
where V=0, and M be the largest invariant set in R. Then, every solution x(t)

originating in §; tends to M as t — oo.
Proof of Theorem 4.3. We want to show that the center manifold system
m 01 m g1
g = + 2 4.6
) =00 a) (5)=(3) &
is asymptotically stable, where

gi = gi(nhrn) = gi(hl(nlvnQ)v s 7hm(7717772)7n1a 772)

Using normal form, we have
2 2
_ m Up e 0 0 > < 0 )}
H = Span ’ ’ ’ ’ )
= { () (507 ) () () G

T@ (p2(n)) = < 8 (1) )p(2)(n) - D [p® )] ( 8 (1) >n,
where p®) () € Hy. Then

o)) (3) () (i) (1) (25

Since Ho = R (T(Q)) @ G2, we can choose

Gz:sP&H{(%)’(ﬁlonz >}

Hence the system (4.6) can be written as

and

51 52
< $2 ) o ( (58% + £8182 > +0(3)’ (47)
where )
5107
2 877% ’
g 0q

= + =
Omony — On?
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If § # 0 or £ # 0 then the system (4.7) is unstable. Hence we assume § = ¢ =0

and using the same method, the system (4.7) can be written as

< 2 > - < A3 "‘ZQILLZ%ZQ > +0(4), (4.8)
where )
\ = 19%g 1 (32?}1) ’
6 o 2\ o
by o= ( 9% +33§1>_132§1< g +52§2>
Ongomz — Ony ) 2 0m7 \Omonz  9n3 )’

If A <0 and g < 0, then we can choose a Lyapunov function
1 1

such that

<.
Il

—)\Z%Z'l +2’22"2
—)\232 A 3 2.2
122 + Az{22 + p212)
2.2
Hz1 25
0.

And by theorem 4.4, we have §; is bounded, R = {(z1,22) | z1 =0 or z9 = 0} and
M = {(0,0)}. Hence the system (4.8) is locally asymptotically stable whenever

IA

A <0 and p < 0. Therefore we must show that there exists a control law w; such
b k‘l 8 g2

that A < 0 and g < 0 whenever Z biks OOy # 0. Since
~ 16293‘ 2 a2$Jj 1529]’ 2
gi(m,m2) = 5 o Gpron Rt 55,2

18g] 5 1 &g
-y
6677177 20120

20mon "6 g )
+ E 0, mhi(n,n2) + Em 0; nohj(m,n2) + - -
o omay; = om0y

1 82gj 9 ngj 1 829j 2. 1 8 gj 3
= 5 an% m + 87]18772 mmne + 5 8772 Up) + ; il 1ayl
1 839j - 0%g 82
+<28n%8n2+; aing, ayﬁ; g, a i
1 83g]- " 82 82
+ (237}18772 + ; i3 877183/ + ZZ: 226 6 mm

193g; 3
(6 o +; i35 28 ) +- (4.9)

103G 1 (0% \°
A= L0 100
6 Ony 2\ 9

nn2 +

Thus
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1y < 9?92 <5 g1>
= + > a2

6 8771 ZZ: ' Om0y; ong
1 3392 biky 0%gy - 8¢y 1 (Pq\”
N 6 8 3 a11 Z blk‘ 6’)716% ZZ:; cil 87718% * 5 877%

b k:l 8 g2
= + .
“Z bk Omay; T

bkl 892

Hence we can choose aq1 such A < 0 whenever Z bk 00y #0. And
_ ( & go n 33@1) 12°q ( 81 n 3292)
: oo ony ) 2 0 \omon, | on3

1 &gy - 9?92 - d%go
= = + a2 —— + il
(2 anZom; z_; 2 omoy: ;alangayi
1 8391 3 Ui 8291 4 1 8291 0291 8292
* (6 o T ;aﬂ@m@yi Y (amam T o )

biki 0%gs biki 0%go
= + (5.
‘”22 byk; O Oy; “Z Dok 00y

Since a1 has been fixed, hence we can find a19 such that p < 0. That is, there
exists a control law wy = an®+ Bnins+7n3 such that system (4.5) is asymptotically

stable when it is satisfied with the assumption of theorem 4.3.

QR 0 0
Corollary 4.5 IfQ = 0 0 1 |, whereQ* is a Jordan form with all eigen-
0 00

values have negative real parts. Then we have the same result as theorem 4.3.

Proof. Using the proofs of corollary 4.2 and theorem 4.3, we can easily prove the

corollary.

Case III. () = ( (1) _01 )

For the case, equation (4.3) become

U1 —ky 0O 0 O Y1 wy

: Y2
gm | = 0 —km 0 0 Sl we | (410)
m 0 0 0 -1 Ym g1

3
[\
o
o
—
ja)
3
Q
V)
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- 3 o
where w1 = byv + f1 and w; = l—)—(wl —fi)+ fifori=2,3,... ,m. Let
1
Y1 hy(n1,m2)
ha(m,
v y‘z _ 2(77‘1 n2) |
Ym hm("?lﬂh)

where h;(n1,1m2) = ann? + aiemmnz + aizns + O(3) and define a control law w; =
an? + Bmne +m3. By (2.3) we have
—ki(a11m? + arzmne + a13n3) + an? + By +n3 + O(3)

b _ _
—k (a1t + azame + azsn3) + 5*2(0”7% + Bmnz + 75 — fi) + f2 + O(3)
1

b o
—ku(amnt + amamnz + aman3) + 2 (ani + B + 3 = fi) + fm + O3)
1

ar2nt + 2(a13 — a11)mie — a1z + O(3)
ageni + 2(ags — agi)mnz — azns + O(3)

aman} + 2(am3 — am1)mn2 — amans + O(3)

Hence
o kl 1 0 ail
6 - _2 kl 2 ai12
v 0 -1 k a13
and
ki 10 ai1 b « ti1
-2 ki 2 a2 — [_)l B + tio 7
0 -1 k a;3 LA v ti3
where ~ B B
; b; 0°f1 10%f;
G=—a 2L - :
‘ 2b1 877% 2 017%
tio — _@ anl 82fi
” by Ommnz  Omna’
o b L0
BT o2 T 20m2
Thus
a1 C11
;2 - C12
a;3 C13
7 kf +2 —ko 2 «
= L 2k; k2 —2k; B
T by (k3 + 4k ' i i
4k \ s g k2 )\

b: (Qk‘l + 2k; + klk:?)an + (kilz — klki)alg + (2](51 — 2/{71')&13
= m (leki — Qk'?)an + (2/€1 + 2k; + klk?)alg + (k? — 2k1/<:i)a13 ,
1A% v (2k1 — Qki)all =+ (klk‘i — k?)alg + (2]{21 + 2ki + klkg)alg
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where
cil 1 k2 +2 —ko 2 ti1
Ci2 = 73 AL Qki k? —Qki tz‘z

Theorem 4.6 If the system (4.10) satisfies

" bi(kE — kiky) [ 02 92
Z 7( 7 1 ) < g1 + g2 > #0
— by (k3 +4k;) \Omdy;  Omy;

or

i@ (2ky + 2k; + k1 k) ( 0%q 9%gs ) 40

i1 b1 k? + 4k; ) 87]28% 877183/7;

then it can be stabilizable by a control law wy = an?® + Bmmn + 3.

Proof. The center manifold system is
m 0 -1 m g
! = +( 2 , 4.11
(772> (1 0)(7]2) <92> )

gi(mﬂh) = gi(hl(TIlvTD)u cee 7hm(771,772)7771a 772)

where

Using the result of example 3.1, the system (4.11) can be reduced to

4Y_ (0 -1\( = (dz1 — e22) (27 + 23)
(2)=00 ) (2)+(EErg ) row v
Let z1 = rcosf, zo = rsinf, then the system (4.12) can be put into the normal
form
7 =dr3+0(4),
0 =—1+ f(r).
We want to show that (4.13) is asymptotically stable. That is, we must find a
control law such that d is negative. Equations (3.7) and (4.9) imply that

(4.13)

3 3 G 3 g 35
Dy, 91+ Dyonp 91+ Dy 92 + Dﬁng

180 | & g 1 g g1
~ 6an} +ZZ Y omay: 2 onons +; 20 18yz +ZZ " onady;

1 9g < g2 - Pgr | 199 | 992
+= + a; + a; + = + a;

2 O, 02 ; % O Oy; ; 2oy 6 ond ; ? a0y
“ %g1 9%gs ) ( %q 8292 )
= ai1 + a; a;

;( ' 3) <87718yz On20y; ; 2 On20y; 8?718%

13391 1 Pg 1 PPgo }8392
6 On} ~ 20ni0ny  20mon3 6 on3’

(4.14)
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where
a1 + a3 _L [(k1k? + 4k1)(a11 + a13)] + ci1 + cis
7 7 bl(kf) +4k1) 4 7 135
b
aiz = ————— [2(kik; — k2)(a11 — a13) + (2ky + 2k; + k‘lk?)am} + Cia.

by (k3 + 4k;)

The equation (4.14) is changed into, by taking a13 = —ayy,

i*[ Akrk; — k2)aqy + (2ky + 2k; + k1k2)a ]( P P )
(kP +4k;) - " ! T Omoy:  omay;

+§:(8,1+53)< 9*g1 & gs ) 1P 1 &P 1 Pga | 10
— T\ omdy: - 0npdy; 6 O} 20n70m2  20mdn; 6 Inj
i%z(klkz—k?) < 9%g1 N %o )

On20y; -~ OmOy;

T bi(2ky + 2k + k1k2) ( 829, 929 >
a ; bl(k,’? + 4]’?1) 87728% + anlayz +C,
whenever ) ; ) 2
L bi(kki — k2) (O 0
Z 0 13 g1 n g 40
— bi(k +4ki) \On0y;  OmOy;
or

f: bi(2k1 + 2k; + k1k2) [ 9%q 9%go
by (k3 + 4k;) On0y;  Omoy;

We can take suitable a1; and ais such that d is negative. That is, we can find
a control law wy = an? + Bnine + 03 such that system (4.10) is asymptotically
stable.

Corollary 4.7 We have the same result as theorem 4.5 whenever

Q" 0 0
Q= 0o o -1 ],
0 1 0

where Q* is a Jordan form with all eigenvalues have negative real parts.

CaseIV.Q:(g 8)

In the case, the system (4.3) become

71 -k -+ 0 00 1 wi

: : A v2

U | = 0 —km 0 0 Sl ow, | (4415)
M 0 0 00 Ym g1

72 0 0 00 n 92
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where w1 = byv + f1 and w; = l—)—(wl —fi)+ fifori=2,3,... ,m. Let
1
Y1 hi(n1,m2)
Y2 ha(ni,m2)
Y = ) = ) ;
Ym B (11, m2)

where h;(n1,m2) = aan} + aiemnz + aini + O(3) and a control law be wy =
an? + Bmne +ym3. By (2.3) we have

—k1(aun? + a1omnz + a13n3) + ami + Bmunz +yn5 + O(3)
ba _ _
—k1(az1n? + azoamnz + azsng) + 67(0477% + B + 2 — i) + fo + O(3)
1

b o
—k1(@mn} + amomn + aman3) + 37 (ot + B + 3 = fi) + fn + O(3)

b1
O(3)
O(3)
O(3)
Hence
« k‘l 0 0 aill
6 = 0 k& O aio
v 0 0 k’l ais
and
ki 0 0 a1 b: « Ci1
0 k O a;2 :Bi B+l en |,
0 0 kK ai3 L\ y ci3
where ) ) )
b; 0%f1  10%f;
Cil1 = ——=———>5 — ,
YT o o 20n
bi 0%f1 0% f;
Ci2g = —= + ,
b1 Omnz  Omine
by 0°fi  19%f;
Ci3 = —"7 Ao + = 5 -
2, o2 | 2 on?
Thus
ail b [ @ 1 [ ¢
@i2 s B |+ o | o
@i3 Y Ci3
biky [ 1 1 [
= 7 o 5 4.16
b1k aio + ; C19 ( )

a13 C13
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Theorem 4.8 If the system (4.15) satisfies

0?2 0?2 192
7921 — 0, 91 4z 922 —0,
8771 Omone 2 8"72
1% | &g Pgr 0
2 0n3  Omon T o3
and
" biky 9%go " biky 9% " biky (0% d%go ’
9 Vi Vi > Vi i
; bik; On20y; ; bik; On10y; ; bik; (37723% 577133/)

(4.17)
then there exists a control law w1 such that the system is asymptotically stable.

Proof. The center manifold system is
( m > _ < g1(n1,m2) )
72 ga(m,m2) )’
where gi(n1,m2) = gi(h1(n1,m2), - -+, P (1, 112), 11, 112)-

Using a Lyapunov function V = %n% + %773 and by equations (4.9) and (4.16),

we have
Vo= mi+meie
102 0?2 192 192 H?
_ 921 3 g1 1 922 2 Y 921 + g2 771775

2 (9 87]187]2 2 8 2 8772 67]18772
10%g biki 9%*q1 4
e +C

+2 ail Z . bl (97716,% 1] ™

b k‘l 8 g2 4
+ a1gz kb1 D0y + C2] My

+ _a11 i lelji <a?72§13/1 + 87713%) 122 klgi 8?71?)2 + C3| nin
+ auZ Z;Zi a?IQng a1y Z Z:Zi < 8?72?9;- + a?ﬁg;)

+ a3 i Zzlzaijglyz + 04] s
+ alzi szi 8?72%21 a12 Z le ( ;;g; + 3767jg2yl> + Cs | mn3,

where Cj is constant for all i =1,2,...5

If the coefficients of 73, 7212, mn3, 13, N3n2, Mmn3 are zero and the coefficients
of nf, m¥n3, n3 are less then zero, then the system is asymptotically stable. If
the system (4.15) satisfies (4.17) then there exists a pair (a1, ai2,a13) such that
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the coefficients of n3my and nyn3 are zero and the coefficient of 1?13 and n3 are
less than zero. That is, we can find a control law such that the system (4.15) is

asymptotically stable.

Q* 0 0

Corollary 4.9 If Q = 0 0 0 |, Q" isa Jordan form with all eigenvalues
0 00

have negative real parts, then we have the same result as theorem 4.8.

5 Discussion

In the thesis, we study the stabilization problem of the system (4.1). we can
rewrite the system (4.1), by changing a basis, into the system (4.2) with (Aj1,b)
is a controllable pair. Hence there is a linear feedback control u(z) = kx1 + v such
that all eigenvalues of A17 + b1k have negative real parts and are distinct. Thus
the system (4.2) can be written as the system (4.3). In the thesis, we only study
the case with all eigenvalues of ) have non-positive real parts. In fact, it is enough

to study the case with all eigenvalues of ) have zero real parts.

There are two open questions. One is to find a better Lyapunov function than
one of the proof of theorem 4.8 to improve the sufficient condition of theorem 4.8.
The other one is to study the matrix @ of the system (4.3) whose dimension is

greater than two.
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