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Nonequilibrium effective action for a charged
particle coupled to quantized electromagnetic

fluctuations in general covariant gauge
Yih-Shyan Su∗ Jen-Tsung Hsiang† Da-Shin Lee†

Abstract

The nonequilibrium effective action for a charged particle interacting with the quantized electromag-
netic fields is derived within the context of the closed-time-path formalism by integrating out field variables
in general covariant gauge. The reduced density matrix of the charged particle is then obtained, thus en-
abling us to explore quantum decoherence phenomena of the charged particle in terms of the decoherence
functional W by an interference experiment under the influence of electromagnetic quantum fluctuations.
The issue of gauge invariance of the decoherence functional is discussed.
PACs numbers: 03.65.Yz, 05.40.a, 42.50.Lc

1 Introduction

The interaction of the charged particle and the electromagnetic fields has been studied
quantum-mechanically in an open system approach [1]. If we focus on the dynamics of the charged
particle, we may treat the charged particle as the system of interest, and the degrees of freedom
of the electromagnetic fields as the environment. The influence of fields on the particle can be
obtained by integrating out field variables within the context of the closed-time-path formalism
[2, 3]. One way of observing these effects is via the interference experiment of the charged par-
ticle beam [4]. In the previous article [5], we employed the method of influence functional, and
obtained the evolution of the reduced density matrix of the charged particle with self-consistent
backreactions from the quantized electromagnetic fields. Under the classical approximation with
prescribed trajectories of the charged particle, it was shown that the modulus of the exponent in
the influence functional describes the change of the interference contrast in term of the decoher-
ence functional, and its phase results in an overall shift of the interference pattern. However, the
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gauge in the previous study is the Coulomb gauge. In this paper, we would like to discuss the
issue of gauge invariance of the decoherence functional. This gauge invariance can also be illus-
trated by explicitly computing the decoherence functional in general covariant gauge, and then
comparing it with the result obtained in Coulomb gauge. Unless specified otherwise, the metric
of the Minkowski space-time takes the convention of ηµν = diag (1,−1,−1,−1), and the spatial
components of a four-vector are denoted in bold-face.

2 Influence functional formalism

Gauge invariance for a charged particle that is minimally coupled to the electromagnetic fields
requires the Lagrangian of the form [6]

L =
m
2

q̇2 −V (q)+
Z

d3x
[
−1

4
FµνFµν − jµAµ

]
, (2.1)

where q describes the position of the charged particle, and jµ is the current density,

jµ(x) = e
Z

dτ uµδ(4)(x−q(τ)) , (2.2)

with uµ = dqµ/dτ being the four-velocity of the particle. In addition, V (q) is an external poten-
tial. The field strength tensor Fµν is defined by Fµν = ∂µAν − ∂νAµ. However, gauge invariance
allows infinite copies of redundant degrees of freedom of vector potentials, related by the gauge
transformation in the configuration space of the field. Some of this redundancy can be eliminated
by introducing the gauge-fixing term [7],

LGF = − 1
2ξ

(∂µAµ)2 , (2.3)

in general covariant gauge where ξ is an arbitrary real parameter. With the gauge-fixing term
included, the Lagrangian then becomes

L[q,Aµ] =
m
2

q̇2 −V (q)+
Z

d3x
[
−1

4
FµνFµν −

1
2ξ

(∂µAµ)2 − jµAµ
]
. (2.4)

Let ρe and ρA be the density matrices of the charged particle and the fields, respectively. We
assume that the initial density matrix of the full system at time ti can be factorized as

ρ(ti) = ρe(ti)⊗ρA(ti) . (2.5)

The fields are initially assumed in thermal equilibrium at temperature T = 1/β with the density
matrix ρA(ti) given by

ρA(ti) = e−βHA , (2.6)
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where HA is the Hamiltonian of the free electromagnetic fields. Then the zero-temperature limit,
which corresponds to the initial vacuum state, can be reached by taking T → 0. The particle-field
system evolves unitarily according to

ρ(t f ) = U(t f , ti)ρ(ti)U−1(t f , ti) (2.7)

with U(t f ,ti) the time evolution operator of the full system. Thereafter, the state at later times
becomes entangled due to the interaction between them. We further assume that the interaction
between the charged particle and fields is adiabatically switched on in the remote past with ti →
−∞, and then switched off in the remote future with t f → ∞. We then employ the closed-time-path
formalism to describe the evolution of the density matrix of the charged particle and fields. In
the context of the interference experiment, the effects of the quantized electromagnetic fields on
the charged particle can be realized with the help of the diagonal elements of the reduced density
matrix ρr after tracing out electromagnetic fields. The more detailed derivation can be found in
Ref. [5]. Here we summarize the main results. In the coordinate basis the diagonal elements of
the reduced density matrix ρr become

ρr(q f ,q f , t f ) =
Z

d3q1 d3q2 J (q f ,q f , t f ;q1,q2,ti)ρe(q1,q2, ti) , (2.8)

where the propagating function J (q f , q̃ f , t f ;q1,q2, ti) is defined as

J (q f , q̃ f , t f ;q1,q2, ti) =
Z q f

q1

Dq+
Z q̃ f

q2

Dq− exp
[

i
Z t f

ti
dt

(
Le[q+]−Le[q−]

)]
F [ j+µ , j−ν ] , (2.9)

and the Lagrangian Le[q] of the charged particle is given by

Le
[
q
]
=

1
2

mq̇2 −V (q) . (2.10)

Here we denote the quantities in the path integral running forward (backward) in time with the +
(−) sign in the superscript. We introduce the influence functional F [ j+µ , j−ν ],

F [ j+µ , j−ν ] = exp
{
−1

2

Z

d4x
Z

d4x′
[

j+µ (x;q+(t))
〈
A+µ(x)A+ν(x′)

〉
j+ν (x′;q+(t ′))

− j+µ (x;q+(t))
〈
A+µ(x)A−ν(x′)

〉
j−ν (x′;q−(t ′))

− j−µ (x;q−(t))
〈
A−µ(x)A+ν(x′)

〉
j+ν (x′;q+(t ′))

+ j−µ (x;q−(t))
〈
A−µ(x)A−ν(x′)

〉
j−ν (x′;q−(t ′))

]}
, (2.11)

which contains full information about the influence of the quantized electromagnetic fields on the
charged particle, and is a highly nonlocal object. The Green’s functions of the vector potential are
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defined by 〈
A+µ(x)A+ν(x′)

〉
=

〈
Aµ(x)Aν(x′)

〉
θ(t − t ′)+

〈
Aν(x′)Aν(x)

〉
θ(t ′− t) ,〈

A−µ(x)A−ν(x′)
〉

=
〈
Aν(x′)Aµ(x)

〉
θ(t − t ′)+

〈
Aµ(x)Aν(x′)

〉
θ(t ′− t) ,〈

A+µ(x)A−ν(x′)
〉

=
〈
Aν(x′)Aµ(x)

〉
≡ Tr

{
ρAµ Aν(x′)Aµ(x)

}
,〈

A−µ(x)A+ν(x′)
〉

=
〈
Aµ(x)Aν(x′)

〉
≡ Tr

{
ρAµ Aµ(x)Aν(x′)

}
, (2.12)

and can be explicitly constructed as long as the electromagnetic fields are quantized in general
covariant gauge. The retarded Green’s function and Hadamard function of vector potentials are
defined respectively by

Gµν
R (x− x′) = iθ(t − t ′)

〈[
Aµ(x),Aν(x′)

]〉
, (2.13)

Gµν
H (x− x′) =

1
2

〈{
Aµ(x),Aν(x′)

}〉
. (2.14)

Here the influence functional can be expressed in a more compact form in terms of its modulus
and phase by

F [ j+µ , j−ν ] = exp
{

W [ j+µ , j−ν ]+ iΦ[ j+µ , j−ν ]
}

, (2.15)

with

W [ j+µ , j−ν ] = −1
2

ZZ

d4xd4x′
[

j+µ (x;q+)− j−µ (x;q−)
]
Gµν

H (x− x′)
[

j+ν (x′;q+)− j−ν (x′;q−)
]
,

(2.16)

Φ[ j+µ , j−ν ] =
1
2

ZZ

d4xd4x′
[

j+µ (x;q+)− j−µ (x;q−)
]
Gµν

R (x− x′)
[

j+ν (x′;q+)+ j−ν (x′;q−)
]
.

(2.17)

Thus, the nonequilibrium effective action can be obtained as

Snoneq[q+,q−] =
{

Z t f

ti
dt

(
Le[q+]−Le[q−]

)}
− i lnF [ j+µ , j−ν ] . (2.18)

Although the nonequilibrium effective action of the charged particle is apparently gauge-
dependent, any measurable effect obtained from this action must be invariant under the gauge
transformation when the charged particle is in its on-shell condition.

Following Ref. [5], let us now consider the initial state vector
∣∣Ψ(ti)

〉
of the charged particle

to be a coherent superposition of two localized states
∣∣ψ1

〉
and

∣∣ψ2
〉

along worldlines C1 and C2,
respectively, ∣∣Ψ(ti)

〉
=

∣∣ψ1(ti)
〉
+

∣∣ψ2(ti)
〉
, (2.19)

after they leave the beam splitter at the moment ti. Its initial density matrix is then given by

ρe(ti) =
∣∣Ψ(ti)

〉〈
Ψ(ti)

∣∣
= ρ11(ti)+ρ22(ti)+ρ21(ti)+ρ12(ti) ,
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where ρmn(ti) =
∣∣ψm(ti)

〉〈
ψn(ti)

∣∣. The terms ρ21 + ρ12 account for quantum interference. Then,
at time t f , when the partial waves of the charged particles are recombined at the location q f , it
is seen that the interference pattern is described by the diagonal elements of the reduced density
matrix ρr(q f ,q f , t f ) in Eq. (2.8).

The expression (2.8) of the reduced density matrix at time t f accounts for the full quantum
effects of a nonrelativistic charged particle, but the corresponding path integral can not be car-
ried out without invoking further approximation [4]. Now we consider the charged particle as a
well-defined wave packet where its mean trajectory follows the classical path constrained by an
appropriate external potential V (q). Since the finite spread of the particle’s wave packet, due to
uncertainties on both position and momentum, can be legitimately neglected when its de Broglie
wavelength, λdB is much shorter than the characteristic length scale associated with the accuracy
of the measurement l. Thus, as long as l À λdB, the wave packet can be viewed as sharply peaked
in the position and momentum of the charged particle, and thus its intrinsic quantum effects can
be safely ignored [4]. As such, the leading effect of the decoherence can be obtained by evalu-
ating the propagating function (2.9) along prescribed classical paths of the chagres. Thereby, the
diagonal components of the reduced density matrix ρr(q f ,q f , t f ) becomes

ρr(q f ,q f , t f ) =
∣∣ψ1(q f , t f )

∣∣2 +
∣∣ψ2(q f ,t f )

∣∣2 +2eW [ j1, j2] Re
{

eiΦ[ j1, j2]ψ1(q f , t f )ψ∗
2(q f ,t f )

}
,

(2.20)
where the W and Φ functionals are evaluated along the classical trajectories, C1 and C2. The j1,2

are the classical current along the respective paths. Thus, we find that the interference contrast
is modified by the presence of the functionals W [ j1, j2]. Explicitly, the decoherence functional
W , determined by the Hadamard function of vector potentials, reveals loss of coherence between
charged particles, while the phase functional Φ, related to the retarded Green’s function, causes
an overall phase shift of the interference pattern. Both effects arise from the interaction with the
quantized electromagnetic fields.

3 Gauge invaraince of the decoherence functional

The role of the gauge fixing term is most obvious if we express the Green’s function in the
momentum space,

〈
Aµ(x)Aν(y)

〉
= Gµν(x− y)

=
Z d4k

(2π)4 Gµν(k)e−ik·(x−y) . (3.1)
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In general covariant gauge, the Green’s function is given by

Gµν(k) =
1
k2

(
−ηµν − (ξ−1)

kµkν

k2

)
, (3.2)

where k is the four-momentum. For the special choice of the gauge fixing parameter ξ = 1, it
reduces to the form in Lorenz gauge [8]. We note that if the charged particles are sufficiently
localized in space, then the current will be conserved,

∂µ jµ(x) = 0 , or kµ jµ(k) = 0 . (3.3)

This is known as the on-shell condition. It is straightforward to see that the decoherence functional
W reduces to the expression derived in Ref. [4], where the momentum-space Green’s function is
given in Lorenz gauge.

We may further reduce the result to the one derived in Ref. [5]. Let us expand the vector
potentials by the creation and annihilation operators in Lorenz gauge,

Aµ(x) =
Z d3k

(2π)
3
2

1√
2ω

3

∑
λ=0

εµ
λ(k)aλ(k)eik·x−iωt +H.C. (3.4)

with ω = |k|. The polarization vectors εµ
λ obey the condition,

3

∑
λ=0

ηλλ εµ
λ(k)εν

λ(k) = ηµν . (3.5)

Then, the Hadamard function in Lorenz gauge, denoted by Dµν
H , can be explicitly given by

Dµν
H =

1
2
〈0|

{
Aµ(x),Aν(x′)

}
|0〉)

= −πηµν
Z d4k

(2π)4 e−ik·(x−x′) δ(k2) . (3.6)

However, we observe that, from Eq. (3.5),

ηµν =
2

∑
λ=1

εµ
λ(k)εν

λ(k)+
kµkν − (k ·n)[kµnν +nµkν]

(k ·n)2 − k2 +
k2nµnν

(k ·n)2 − k2 ,

where n is some time-like vector. The polarization vectors in Lorenz gauge include the transverse
components of the electromagnetic fields in the first term, as well as the longitudinal and the scalar
components in the last two terms [9]. It is immediately seen that the second term, proportional to
kµ, will not contribute to the decoherence functional due to charge conservation. In addition, the
third term also vanishes since

−π
Z d4k

(2π)4 e−ik·(x−x′) δ(k2)
k2nµnν

(k ·n)2 − k2 = 0 ,
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because for a regular function f (k), it is true that
Z

dk f (k)k2δ(k2) = 0 .

Therefore, we explicitly reduce the decoherence functional (2.16) into the form obtained in
Coulomb gauge, where only the transverse photons, as the physical degrees of freedom of the
electromagnetic fields, contribute.

To further illustrate gauge invariance of the decoherence functional, we plug the explicit ex-
pression of the currents (2.2) into the decoherence functional (2.16), and carry out the integrals.
Since the two worldlines C1 and C2 form a closed loop C = C1 −C2 by moving along C1 in the
forward direction and C2 in the backward direction instead, the decoherence functional W can be
re-written as

W = −1
2

e2
I

C
dqµ

I

C
dq′ν Dµν

H (q,q′) . (3.7)

With the help of the Stokes theorem, we may write the loop integral into the form of the surface
integral,

W = −1
8

e2
Z

daµν

Z

da′ρσ Dµν; ρσ
H (q,q′) , (3.8)

where daµν is the area element of the time-like two-surface enclosed by C , and

Dµν; ρσ
H (q,q′) =

1
2
〈{

Fµν(q),Fρσ(q′)
}〉

. (3.9)

Thus, the decoherence functional is expressed in a gauge-invariant way.

4 Evaluation of the W functional

As a simple example, let us compute the decoherence functional W when the electromagnetic
fields are initially in the vacuum state [4, 10]. The motion of the charged particles can be dictated
by an external potential along the prescribed paths. The motion of the charged particle along the
x direction is assumed to be constant, while the motion in the z direction varies with time. Thus,
their respective worldlines are given by C1,2 = (t,vxt,0,±ζ(t)). Since the decoherence functional
W in Eq. (3.7) reveals manifest Lorentz invariance, it proves more convenient to boost to a frame
comoving with the velocity u = (1,vx,0,0) at x = vxt and y = z = 0, in which the charged particles
are seen to only have sideway motion in the z direction. Then, the W functional (3.7) depends only
on the z–z component of the vector-potential Hadamard function. With the help of the Hadamard
function in Lorenz gauge (3.6), the straightforward algebraic manipulation shows

W = −2e2
Z d3k

(2π)3
1

2ω

[
1−

k2
z

ω2

]∣∣∣∣Z dt ζ̇cos(kzζ)eiωt
∣∣∣∣2

, (4.1)
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where ζ̇ = dζ/dt. We then end up with the same expression of the decoherence functional as in
Ref. [5]. We further simplify the calculation by applying the dipole approximation, cos(kzζ) ' 1,
consistent with the non-relativistic limit. Using the path function of the form

ζ(t) = Re−
t2

T 2 , (4.2)

where 2R is the effective path separation and 2T is the effective flight time, we have the decoher-
ence functional given by

W ' −2e2
Z d3k

(2π)3
1

2ω

[
1−

k2
z

ω2

]∣∣∣∣Z dt ζ̇ eiωt
∣∣∣∣2

= −2e2

3π
R2

T 2

(
1
c2

)
, (4.3)

which is finite without the ultraviolet divergence. The absence of the potential ultraviolet diver-
gence can be seen from the corresponding Fourier transform of the path function (4.2) where the
contribution from the high frequency modes with ω & O(1/T ) is exponentially suppressed. The
result free of ultraviolet divergence is quite general for the smooth path function with the finite
flight time.

In the nonrelativistic limit, since the transverse component of particle’s velocity vz ∼ R/T is
about 10−2c in a typical interference experiment, the decoherence functional W , proportional to
v2

z , will be of the order of 10−5 to 10−6. Therefore, the loss of the interference contrast due to
vacuum fluctuations of quantized electromagnetic fields may be still far from being measurable.

5 Concluding remarks

The aim of this paper is to present a field-theoretic approach to investigate decoherence be-
tween charged particles due to the quantized electromagnetic fields by the method of Feynman-
Vernon influence functional. We have shown that the influences of the quantized electromagnetic
fields on particle’s interference are manifested in both modification of the fringe contrast and shift
of the interference pattern. Both effects arise from the interaction of the quantized electromag-
netic fields with the charged particle. We also have explicitly shown that the incorporation of the
gauge-fixing term in general covariant gauge, which is used to remove some of gauge redundancy,
has no contribution to the decoherence functional owing to charge conservation. Furthermore,
the equivalence between the expressions of the decoherence functional in general covariant gauge
and the Coulomb gauge is demonstrated. Finally, we rewrite the decoherence functional into the
gauge-invariant form in terms of the field-strength tensor.

The extension of the above study involving thermal fluctuations within the same formalism is
in progress.
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在一般協變規範下與量子化電磁擾動藕合的帶電粒

子之非平衡有效作用量 
 

蘇懿賢   項人宗    李大興 

摘    要 

 與量子化電磁場作用的帶電粒子的非平衡有效作用量，可用閉時路徑公式，在一般協變規範下，

藉由 積分掉場變數而求得。由此可得帶電粒子的化約密度矩陣，並藉著在電磁量子化擾亂之影響下的

干涉實驗，可根據去同調函數 W 的觀點探討 帶電粒子的 量子去同調現象。在本論文中，亦討論到去

同調函數的規範不變性。  


