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Solitary solutions of the Schiodinger-Poisson
equations in one and two dimensions
Gin-yih Tsauf

Abstract

The Schrddinger-Poisson equations are a set of nonlireaatiens that form the back-bone of many
important physics problems. An interesting problem is ffiecé of gravity in quantum mechanics. The
density distribution described by the wavefunctipproduces a gravitational potentilthrough the Pois-
son equation, and the potentialin turn changes the wavefunctiapitself through the Schrodinger equa-
tion. Such a feedback mechanism provides a nonlinear effatteads to solitary solutions. In this paper
1-D and 2-D solitary solutions of the Schrodinger-Poissguations are computed by both the shooting
method and the boundary-value method. The shooting metheifigient for finding solutions in the short
range, but unstable in the long range. Whereas, long-rabigéans can be computed accurately by the
boundary-value method with the short-range initial guessided by the shooting method. Hence for this
problem these two methods play complementary roles in theenigal computation.

1 Introduction

The Schrodinger-Poisson equations can be written as
.0
g =D ve, DV =3 (2.)

for gravitational systems, or
.0
Wi = —0%Qi + gV, —0%V = IZQi|L|Ji|2 1.2)

for electrical systems, wheig represents the charge of thh species of particle. The first part
in Egs. (1.1) and (1.2) is the Schroddinger equation, in White probability amplitudd); is de-
termined by the potentid, and the second part is the Poisson equation, in which trenpatv

is induced by the probability densitiég;|? of all the particles. Applications of the Schrodinger-
Poisson equations includes modelling self-gravitatingtesys such as bosonic stars [1-4], and

*Department of Mathematics, Tunghai University, Taichufg,4Taiwan



30

modelling the Coulomb interaction between charge carifesgmiconductors [5-9]. In general,
the Schrodinger-Poisson equations can be consideredusnsugn version of the Vlasov-Poisson
equations or a statistical version of the Hartree-Fock gopuis, both of them have a wide range of
applications in physics.

If only a single species of particle is considered, Equatidnl) and (1.2) can be rescaled to

Sw= TPy, 0 = P, (13)

wheree = —1 when the force is attractive aisd= +1 when the force is repulsive. Equation (1.3)
has a unique global solution with the initial condition

P(x,t =0) = Wo(x), 1.4)
and the boundary condition

lim Y= lim V=0, (1.5)

x| —c0 [X| o0

if the initial datago(x) is anH2(R?) function [10]. These solutions are generally not statignar
For the repulsive case & +1) with finite energy, the solutions decay asymptoticallyzéyo
ast — o [10-12]. Similarly, for the attractive case € —1) with positive energy, the solutions
expand unboundedly &s- 0 [13,14]. Only for the attractive case with negative enestgtionary
3-D solutions exist [14]. In this case there exists an irdiffidgmily of stationary normalizable
spherically-symmetric solutions [15]. The first tens ofrthkeave been computed explicitly by the
shooting method [3, 16] or by the boundary-value method,[a@ll some analytical justifications
for the numerical results can be found in [15, 18]. In thisgraihe focus is on the attractive case
in 1 and 2 dimensions. We compute the stationary normabkzaghmetric solutions in Secs. 2, 3
and study the convergence of the solutions at langeSec. 4.

For the attractive case, Eq. (1.3) becomes

i%m: —PY+Vy, DV = |y (1.6)

The equation is satisfied by the stationary solutipfig t) = e '“*W(x), V =V (x) or the solitary
solutions(x,t) = e 1@ e(VX/2-V/4y(x _vt), V =V (x— wt) with arbitrary velocityv, when¥
andV satisfy

W= (V- w)¥, 0NV =42 1.7)

Since stationary and solitary solutions are related sirhpls change of reference frame, we shall
not distinguish them in the rest of this paper. In the 1-D adléses, the equations for symmetric
solutions are respectively

W =(V-—w)W¥, Vi =¥ (1.8-1)
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rWo)r =r(V-—w)¥, (rV;); =rv? (1.8-2)
The smoothness of the solutiongat 0 is required,
W (0)=0, V;(0)=0, (1.9)
and the normalization condition is also required, whictespectively

/ Wl — 1, (1.10-1)
0

/ o Wdr — 1. (1.10-2)
0

By integrating the the Poisson equations in Eq. (1.8) wiipeet tor, and substituting iv; (0) =
0, itis seen that Eq. (1.10) is equivalent to the boundarylitmms

Vi -1 asr— oo, (1.11-1)
vy — %{ as r — oo, (1.11-2)

I
o V —r asr— oo, (1.12-1)
V — IS—; as r — oo, (1.12-2)

The integration constantin Eq. (1.12) is notimportant bsedahe solution can be changete c

for any constant with the eigenvalue changeddo+-c. In section 2 we search for the solutions of
Egs. (1.8), (1.9), (1.10) using the shooting method andétiae 3 Egs. (1.8), (1.9), (1.12) using
the boundary-value method. Because for lartfee shooting method becomes extremely sensitive
to the initial value, it can only provide solutions in a lieit range. The boundary-value method
is used to verify the solutions and extend them to largdere the shooting method is inherently
unstable.

2 Solutions by the Shooting Method

Let us define a new variab¥by
Y=V-uw. (2.1)
In terms ofY, Egs. (1.8) and (1.9) become

Wi =YW, Yo =42, (2.2-1)
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(rWo)r =YW, (rY); =rw?, (2.2-2)
and
Y. (0)=0, Y(0)=0. (2.3)

Since Egs. (2.2), (2.3), and the normalization condition(EdL0) are invariant under the transfor-
mation¥ — —W¥, we may assumi’(0) > 0. If furthermoreY (0) > 0, then Egs. (2.2) and (2.3)
imply W, > 0,Y; >0forallr >0, and¥ — o, Y — o asr — oo, which violates the normalization
condition. Therefore one must ha¥é0) < 0, namely#(0)Y (0) < 0. Hence one ha®’Y < 0 near

r =0 andW? > 0 for all r. This implies from Egs. (2.2) and (2.3) th# < 0 nearr = 0 and
Y, > 0 for allr > 0. NamelyW is decreasing whenis small andy is increasing for alf. From
Egs. (1.12) and (2.1Y, increases

from Y(0) <O to r—wasr — o (2.4-1)

for the 1-D case and |
from Y(0) <0 to % —wasr — oo, (2.4-2)
for the 2-D case.
The Schrodinger equations in Eq. (2.2) are equivalent to

LPrr :YL'J, (25'1)

(VIW)r = [Y = 1/(4r?)])(VT¥), (2.5-2)
for the 1-D and 2-D cases respectively. Eq. (2.4) implies Yhéor the 1-D case o¥ — 1/(4r?)
for the 2-D case are increasing from being negative nea® to a transition point = ry beyond
which they are positive. Therefore Eq. (2.5) implies thatsblutions¥ for the 1-D case ot/r¥
for the 2-D case are oscillatory for< ry and either decay to zero faster than some exponentially
decaying functions or diverge ttico faster than some exponentially growing functions ifas
rm. Generally the solutions diverge tbeo. For everyW(0), only a discrete set of specid(0)
makes the solutions decay to zero. The shooting method firede tspecia¥ (0) by successively
narrowing down the rangges, ¢2) in which Y(0) = ¢; andY(0) = ¢, cause¥ to diverge in the
opposite directions. Namely, one caulés» +o and the other causéis— —oo at larger. By the
continuity condition [15], there exists a valueYf0) in the interval(cy, cz) for whichW or /¥
decay to zero faster than some exponentially decayingifurstand then the integrafg’ W2dr
or [y’ 2rrW2dr are finite. These solutions are called the bound-stateisofut

If W(r) andY(r) satisfy Egs. (2.2) and (2.3),

P(r) = A—lzw (%) .Y = A—lzv (%) , (2.6)
also do, wherd\ is an arbitrary scaling constant. Therefore one can chodseoamakeW(r)
satisfy the normalization condition. As we shall see, thadisg constanh and the eigenvalue
can be obtained by fitting the values of the bound-stateisolslY at larger.
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2.1 The 1-dimensional case

Becauseé¥ can be rescaled by Eg. (2.6) to satisfy the normalizatiomitimm, one may start
the search with¥(0) = 1. As shown in Fig. 2.1, fol¥(0) = —0.641684,¥ has no zeros and
approaches-«, and forY(0) = —0.641685% has a single zero and approaches. Therefore
there exists a value &f(0) in the interval(—0.641685—0.641684 for which W has no zeros and
decays to zero. By successively narrowing down the intethialvalueY (0) for the ground-state
solution is computed to the 14th digit in Fig. 2.1. Foe 0,1,2,3,4,5, in Fig. 2.2 one can find a
value ofY(0) for whichW hasn zeros and approachés 1), and a nearby lower value ¥f0)
for which W hasn+ 1 zeros and approachés1)"1». Therefore in between these two values
there is a¥(0) for which W hasn zeros and decays to zero.

Figure 2.1: the solution® of Egs. (2.2-1) and (2.3) witl(0) = 1 andY (0) = (a) -0.641684, (b)
-0.641685, (c) -0.641686897, (d) -0.641686898, (e) -0664689718419, () -0.64168689718420

The value#’(0) for thenth bound-state solution are reported to the fifth digit infitet column of
Table 1. With these values the solutighdecays to zero faster than some exponentially decaying
function, therefore the probabilitfy” W2dr is finite. Let

/ W2dr = A3, (2.7)
0
then set

0= (3). Y0-Ev(f) =
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n=1

1.0
\ -0.64168 j Y(0) =-2.632243
0.0 : :
3 6
=-0.641685 Y(0) =-2.632242
-1.0

n=2 n=3

1.07 Y (0) =-4.698420 1.0
Y(0) =-6.775114
0.0

0.0 : T
3
Y (0) =-4.698421
1.0 1.0

-2.0- -2.0-

N

g/@_

Y (0) =-6.775113

B

n=4 n=5

1.0 =-8.854880 1.0
Y(0) =-10.935894
0.0 , 0.0
) Y (0) =-8.854881 \/ \/
10 -1.07 Y(0) =-10.935893

-2.0-

~—F

/J

-2.0-

Figure 2.2: the solution¥ of Egs. (2.2-1) and (2.3) witk(0) =

one can easily check thet andY satisfy Eq. (1.10-1) in addition to Egs. (2.2-1) and (2.3&nike

Y(r) —r—wasr — o, (2.9)
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Table 1: Values o¥,,(0), A,, andBy, for the 1-D case

n Yn(0) An Bn
0 -0.64168 1.13286 -1.47076
1 -2.63224 2.29445 -6.95298
2 -4.69842 3.06543 -12.4960
3 -6.77511 3.68106 -18.0465
4 -8.85488 4.20830 -23.5989
5 -10.93589 4.67673 -29.1520
Table 2: Values ok, wn, lTJn(O), and\7n(0) for the 1-D case
n Mm=A on=-BA W0 =AY Va(0) = [Ya(0) — BrlAL P
0 1.0425 13534 09202 07629
1 1.3189 39969 05748 24837
2 1.4527 59217 04739 36952
3 1.5440 75697 04195 47278
4 1.6145 90536 03836 56565
5 1.6723 104241 03576 65137
FromY (r) = A2Y(Ar), one has
Y(r)— Ar+B asr — oo, (2.10)
where
A=23 B=-Nw (2.11)

SinceA andB can be obtained by fitting the values of the bound-stateisolsiY at larger, one
obtains the scaling constaktand the eigenvalu@. The valueA andB for the n-th bound-state
solution,n=0,1,2,3,4,5, are reported in the 2nd and 3rd columns of Table 1. From E¢1}2.

and¥(0) = 1, one has

A= A3

B —-2/3
w=—3=-BA /3,

1 _
¥(0) =¥ =A 23,

1

(2.12)
(2.13)

(2.14)

(2.15)
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Moreover, in accordance with Eq. (2.Y) =Y + w, one has

VO) = Y0)+w
= [Y(0)—BJA %5, (2.16)

The values\, w, LTJ(O), \7(0) for the n-th bound-state solutiom = 0,1,2,3,4,5, are reported in
Table 2. They will be used in the initial guess for the bougdaalue method in Section 3.
2.2 The 2-dimensional case

Similar to the 1-D case, we start the search Wif0) = 1 and estimate the valug0) for
the ground-state solution to the 14th digit in Fig. 2.3. Th&esY(0) for the n-th bound-state
solutionsn=0,1,2,3,4,5, are shown in Fig. 2.4 and reported in the first column of @&do the
fifth digit.

Figure 2.3: the solution$¥ of Egs. (2.2-2) and (2.3) with¥(0) = 1 andY(0) = (a) -
0.824107, (b) -0.824108, (c) -0.8241071603, (d) -0.824860%, (e) -0.82410716034937, (f) -
0.82410716034938

With these values the solutiopfr¥ decays to zero faster than some exponentially decaying
function, therefore the probabilitf§’ 2rr?W2dr is finite. Let

/ 2T W2dr — A2, (2.17)
0
then set
Py = Ly (1) Y=y (3) (2.18)
BNV ERARVVA '
one can easily check thet andY satisfy Eq. (1.10-2) in addition to Egs. (2.2-2) and (2.3&nikle
Y(r)— r_ wasr - w. (2.19)

2n
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n=0 10 n=1
1.0 7
Y (0) =-1.542610
Y (0) =-0.824107
0.0
0.0 T T : 10 15 20
5 10
Y (0) =-1.542609
Y (0) =-0.824108 1.0
-1.04
n=2 n=3
1.0 1.0
Y (0) =-2.0254 J/ Y (0) =-2.41266 j
0.0 I/\ 0.0 T \/ 1
Ut ves -
1.0
1.0 Y (0) =-2.025447 Y(0)=-2.41266
2.0
-2.04
n=4 n=5
104 Y (0) =-2.745186 104 Y(0) =-3. 04111/
0.0 /,\ 0.0 T T
VALY \/ s \/ A=
1.0 1.0
(0) =-2.745187 (0) =-3.041194
-2.0 -2.04

Figure 2.4: the solution¥ of Egs. (2.2-2) and (2.3) witk(0) =

FromY(r)

where

=AY (Ar), one has

Y(r) = CIlnr+D asr — oo,

2
o ¥

InA
2
21 D=A (

21

(2.20)

(2.21)

~a).

SinceC andD can be obtained by fitting the values of the bound-stateisolsi¥ at larger, one
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Table 3: Values o¥,(0), Cy, andDy, for the 2-D case

n Yn(0) Cnh Dn

0 -0.82411 1.35273 -1.14255

1 -1.54261 2.40683 -4.03590

2 -2.02545 3.13053 -6.45050

3 -2.41267 3.71589 -8.59419

4 -2.74519 4.22061 -10.5565

5 -3.04119 4.67094 -12.3853

Table 4: Values ok, wn, lTJn(O), and\7n(0) for the 2-D case

n An = (21C,) Y2 wn = (4m)~tIn(2nC,) LTJn(O) = (2nCy)~1  Vih(0) = (4m)1In(2nC,)
—Dp(2nCy) 1 +[Yn(0) — Dp)(2nCp) 1

0 2.9154 03047 01177 02078

1 3.8888 04830 00661 03810

2 4.4351 05650 00508 04620

3 4.8319 06188 00428 05155

4 5.1496 06589 00377 05554

5 5.4174 06909 00341 05873

obtains the scaling constakntand the eigenvalu@. The value< andD for the n-th bound-state
solution,n=0,1,2,3,4,5, are reported in the 2nd and 3rd columns of Table 3.
From Eq. (2.21) an&(0) = 1, one has

A = (2rC)Y?, (2.22)
~ InA D
© = T
= (4m~lIin(2rC)-D(2rC) ! (2.23)
W) = A—lzw(O)z(an)*l, (2.24)
Y(0) = A—le(O):Y(O)(ZTlC)*l. (2.25)

Moreover,

V0) = Y(0)+w
= (4m)~tIn(2nC) + [Y(0) — D](2nC) L. (2.26)

The values\, w, qJ(O), \7(0) for the n-th bound-state solutiom = 0,1,2,3,4,5, are reported in
Table 4.
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As shownin Figs. 2.1 and 2.3, rapidly increasing precissmequired for the shooting parame-
terY(0) to extend the range ofbefore¥ eventually diverges. In other words, the solution at large
r is extremely sensitive t6(0). This makes it difficult to verify the convergence of the swlns at
larger. On the contrary, for the boundary-value method the boyncanditions are enforced by
the algorithm. The solution is stable with respect to smatlation in the initial guesses. To find
a convergent solution that extends to largéhe initial guesses only need to be in an appropriate
neighborhood of the real solutions. The solutions for smalbtained by the shooting method
serve well for this purpose.

3 Solutions by the Boundary-Value Method

In this section, the ordinary differential equations in Eg8) with the boundary conditions in
Egs. (1.9) and (1.12) will be solved by the boundary-valutho@. In the boundary-value method,
a piecewise cubic polynomial functid@{r) is used, which satisfies the boundary conditions and,
for a selected meshy < r; < --- < ry, it collocates at the two end points of each subinterval
[ri,ri+1] [19]. In [20, 21] it is shown that this collocation method iguévalent to the 3-stage
Lobatto llla implicit Runge-Kutta formula. The adaptiontbie mesh will be determined by the
residual ofS(r) [22]. Since the algorithm must adjust the mesh and 80d that matches the
boundary conditions and gives a minimal residual, it is egjeint to a minimum-finding problem.
Its difficulty lies in the need of an initial guess of the eigalues and the solutions that are close
enough to the real solutions. As mentioned in section 2,a¢hgienV is increasing for alf. For
the ground-state solutio has no zeros and is decreasing forrallThe initial guess should be
made to bear these properties. Moreover, we use the vajles, andLTJn(O), \7n(0) in tables 2
and 4 as a guidance to the initial guess of the solutions. ikV#¢gmeighborhood of those values,
solutions that can be extended to arbitrarily largee found.

3.1 The 1-dimensional case
For the 1-D case, one can use the following functions as ilialiguess.

W = ae (N (3.1)
V = be"Pyr, (3.2)

where) is the scaling parameter ard= W(0), b =V (0) are the heights. The reason for this
choice is that¥ = ae~ (/M7 is a decreasing functiol, = be "/ + r is an increasing function, and
they satisfy the smoothness condition in Eq. (1.9) and thebBary condition in Eq. (1.12-1). It
turns out that we do not need a precise initial guess. Evamgtinthe guess in Eq. (3.1) has no
zeros, it works also for the excited-state solutions. U&ng. (3.1) and (3.2) as the initial guess
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Figure 3.5: the solutions of the ground state and the firstefioited states for the 1-D case

with A, a, b, and the corresponding eigenvalweset to the valued, LT"n(O), \7n(0), andw, in
Table 2, we obtain the excited-state solutions as well agtbend-state solution. The solutions
are shown in Fig. 3.5.
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3.2 The 2-dimensional case
For the 2-D case, the following functions can be used as tkialiguess for the ground state
solution.

W = ae (/N (3.3)
VA %Tln{r—kezmexp(—#)}, (3.4)

where) is the scaling parameter aad= W(0), b =V(0). The reason for this choice is th#t=

ae (/N is a decreasing functio, = L In[r +e?®exp(—r /e?™)] is an increasing function,
and they satisfy the smoothness condition in Eq. (1.9) aadtundary condition in Eq. (1.12-
2). Different from the 1-D case, more elaborated functiomesreeeded for the initial guess of
excited-state solutions. The short-range solutions nbthby the shooting method can provide
the guidance. The solutions obtained are shown in Fig. 3l&rmatively one can also use the
inner-outer-iteration method which uses more iteratigrstesnatically to replace the requirement
for more precise initial guesses. The method was develapfidd 3-D stationary solutions with
high efficiency [17].

4 Convergence at large distance

In both 1-D and 2-D cases, the solutions are computed in & fimiérval[0, rmay as shown in
Figs. 3.5 and 3.6. Although in practice it is not possibledmpute the solutions faimax — oo, it
is essential to make sure that the integrated probabilitgithe beyond max is negligible and the
variation of solutions as the result of choosing a langgy is also negligible. To facilitate the
discussion, let us denote theh solution on0, 2Xr ] asWK(r). We study the convergence of the
solutions for large by computingwft? — w| and (WKt — WK) __asrmaxis doubled repeatedly,
where for the 1-D case

rms

1 2krmax 2 1Y2
(Whrt =)= [W/ [Whrn) - @1
and for the 2-D case
11/2
1 2krmax 2
k+1 _ k |+ k10 wk i
(wn wn)rms ln(zkrmax)z /0 W) Wn(r)‘ orwdr| . (4.1-2)

The results are that all theof™ — wf| are below 10 and all the(Wk™ — W§), _for the 1-D

case are below the precision limit (1%) of the numerical integration in Eq. (4.1-1). For the 2-D
case( Wkt — k) ms &€ shown in Table5. In all the cases as the range of integristincreased,

(WE“ — WE) ms d0€s notincrease. The results verify the convergence afhutions for large.
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Figure 3.6: the solutions of the ground state and the firstefioited states for the 2-D case

5 Summary

We have computed 1-D and 2-D solitary symmetric solutionthefattractive Schrodinger-
Poisson equations using the shooting method and the boumdlre method. The solutions rep-
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Table 5: the convergence of the 2-D solutions for large

n=0 n=1 n=2 n=3 n=4 n=>5
Imax= 175 | rmax= 350 | rmax=500 | rmax= 700 | rmax=800 | rmax= 1000
11x107 | 69x108 | 53x10°® | 38x108 | 35x108 | 28x10°8
39x108 | 25x108 | 1.7x108 | 1.3x108 | 1.2x108 | 98x10°°
14x10% | 89x10° | 6.6x107° | 48x10° | 44x10° | 34x10°
51x10° | 31x10° | 24x10° | 1.6x10° | 1.5x10° | 1.2x10°°

~ X~ X x
|
w N -k O

(97— vl

rms’

resent the self-gravitating effect of massive sheets 1D case and massive wires for the 2-D
case. It is shown that the shooting method can be used to finddlutions in the short range
efficiently, but not in the long range because of its inhesamisitivity to the initial conditions.
Whereas the boundary-value method can be used to compuseltiiens in the full range effi-
ciently if the short range solutions provided by the shaptimethod is used as the initial guesses.
In this way the two methods complement each other. Convesgganalysis shows that the solu-
tions fall off fast enough so that they represent truly |aead solutions.
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