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Global Stability for the Lotka-Volterra Mutualistic
System with Time Delayy
Feng-Chun Hsu* Chao-Pao Ho*

Abstract

In this paper, we are concerned with the dynamical behavior of a two-species Lotka-Volterra
mutualistic system with time delay. First of all, we use three different methods to discuss the global
stability of the unique positive equilibrium point of a two-species Lotka-Volterra mutualistic system
without time delay. Secondly, we study the change of the global stability for a two-species Lotka- Volterra
mutualistic system with time delay. Finally, we illustrative our results by some examples.
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1 Introduction

One of the most important problems in the Lotka-Volterra mutualistic system is the global
stability of mutualistic systems. The global stability analysis for mutualistic systems without time
delay has been done by some authors [1-3]. In [1], Brauer and Soudack gave some hypotheses so
that they can obtain complete information about the global behavior of solutions. In [2], Freedman
and Rai derived conditions for a positive equilibrium point of mutualistic system to be globally
asymptotically stable. In [3], Goh constructed a Lyapunov function to show that the unique posi-
tive equilibrium point is globally asymptotically stable in a nonlinear model of mutualism.

In recent years, the mutualistic systems were extended to include the time delays by some
authors [5,9]. In [5], the authors obtained the conditions for the global stability of facultative
mutualism system with time delay by constructing a Lyapunov functional. In [9], Mukherjee

found out the global stability condition of facultative mutualism system with different time delays.
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In this paper, we consider a two-species Lotka-Volterra mutualistic system with time delay,

s = x() {rlu_w)mﬂxz(g]
K1
(1.1)
0 = x0) {rz(lxz(”"))m]le(t)]
K>
with the initial conditions
x(8) = ¢;(8) >0, 6 €[-1,0], ¢; €C([-T,0],R), i=1,2 (1.2)

where - =d/dt, ri, r2, K1, K2, a2, ) and T are all positive constants. ¢;(¢)(i = 1,2) are con-
tinuous bounded functions on the interval [—t,0]. x;(¢) and x(7) denote the population densities
of two mutualistic populations.

The main purpose of this paper is to establish global stability of a two-species Lotka-Volterra
mutualistic system with time delay. In section 2, we introduce some useful definitions and theo-
rems. In section 3, we analyze the global stability of the Lotka-Volterra mutualistic system without
time delay by using Dulac’s Criterion plus Poincaré —Bendixson Theorem, the construction of the
Lyapunov function or stable limit cycle analysis. In section 4, we discuss the global stability of
the Lotka-Volterra mutualistic system with a single delay by constructing a Lyapunov functional.

In section 5, we illustrate our results by some examples.

2 THE MODEL WITHOUT TIME DELAY

Consider a two-species Lotka-Volterra mutualistic system without time delay modelled by

X
X = x [71(1—1(]1)+0621X2} = x1fi(x1,x2) = gi1(x1,x2)
2.1
X
X = X [72(1—1(22)+0612X1} = xfa(x1,x2) = ga(x1,%2)
with the constraints
x1(t) > 0, xa(r) > Oforall . (2.2)

where ry, r, Ki, K>, 012 and o) are all positive constants. x; and x; denote the population
densities of two mutualistic populations. All we want to discuss is biological population, so we

just consider the first quadrant in the x;-x; plane.
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Analysing the behavior of the system (2.1), firstly, we discuss the local stability of the equilib-
rium points of the system (2.1) by Hartman-Grobman Theorem.

Secondly, we want to analyse the global stability of the unique positive equilibrium point E*
of the system (2.1).
2.1 Local Stability

Clearly, E = (0,0), E = (K;,0) and E = (0,K;) are the equilibrium points and E* = (x7,%3)
is the unique positive equilibrium point in the first quadrant of the system (2.1) with the initial
condition (2.2), where

. —nKi(Kop+r) . —rnK (Ko +n)

Xy = , Xp = (23)
Ki Ko 2001 — 1112 KiKyop0n1 —rir

Remark 2.1 If
K1 Ky02001 —rir2 < 0 2.4)

then E* is the unique positive equilibrium point of the system (2.1).
Now let us analyse the local behavior of the system (2.1) at the equilibrium points E =

(0,0), E = (K;,0), E = (0,K3) and E* = (x},x5). The Jacobian matrix of the system (2.1) takes

the form

2x1
r(l1—=)+0z1x 01X
K
J=
2)C2
0122 r(l——=—)+o2x;

K>
The Jacobian matrix of the system (2.1) at E is

The eigenvalues A = r; , Ay = 1, of J are positive. Thus, the equilibrium point E of the system
(2.1) is unstable.
The Jacobian matrix of the system (2.1) at E is

—r o1 Ky

<
Il

0 rn + oK

The eigenvalues of J are A; = —r , Ay =2 +02K;. Since A; < 0 and A, > 0, the equilibrium
point E of the system (2.1) is a saddle point. Furthermore, we know that

Fl = {(Xl,X2) |X1 >0,XQ=0}
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is the stable manifold of the equilibrium point E.

The Jacobian matrix of the system (2.1) at E is

ri+o Ky 0

<~
I

ok, —r

The eigenvalues of J are A; = r| 4+ 0,21 K> and Ay = —r». Since A; > 0 and A, < 0, the equilibrium
point E of the system (3.1) is a saddle point. Furthermore, we know that

I = {(x1,x2) | x1 =0,x >0}
is the stable manifold of the equilibrium point E.

Lemma 2.2 If
K1 Kyop0py —riry < 0

then the unique positive equilibrium point E* of the system (2.1) is locally asymptotically stable.

Proof : The Jacobian matrix of the system (2.1) at E* is

Since oy
1

det(J*) = —=x{x5—02001x]X}

(%) KK 2 1%2

xixd "1 2O
= —— — 012001
2\ kK,

v x [ T112 — K1 Ko02001
= A

K K>

and

< 0

the unique positive equilibrium point E* of the system (2.1) is locally asymptotically stable.
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Lemma 2.3 All solutions (x(t),x2(¢)) of the system (2.1) with the initial condition (2.2) are

positive and bounded.

Proof : Firstly, we want to show that all solutions (x(¢),x2(¢)) of the system (2.1) with the initial
condition (2.2) are positive. In other words, if the initial point (x; (0),x2(0)) is in the first quadrant,
so is the solution (x;(¢),x2(r)) for all £ > 0. Since x;-axis and x;-axis are the solutions of the
system (2.1), the trajectory of the solutions (x;(¢),x(¢)) with the initial point (x;(0),x(0)) in the
first quadrant cannot cross with x;-axis and x»-axis by the uniqueness of the solution. Therefore,
we know that all solutions (x;(¢),x2(¢)) of the system (2.1) with the initial condition (2.2) are
positive.

Secondly, we want to show that all solutions (x (¢),x2(¢)) of the system (2.1) with the initial
condition (2.2) are bounded. That is, x;(#) and x,(¢) are both bounded for all # > 0. From the
Figure 2.1, we find that all solutions (x(¢),x2(¢)) of the system (2.1) with the initial condition
(2.2) are bounded.

T2

fl(IL‘l, iL’Q) = O

fo(z1,22) =0

(0’ K?)

Ty
(Klo)

Figure (2.1). The slope of the trajectory of the system (2.1)

2.2 Global Stability
Now, we want to use the following three methods to analyse the global stability of the unique

positive equilibrium point E* of the system (2.1) :
(i) Dulac’s criterion plus Poincaré- Bendixson theorem
(i) Stable limit cycle analysis

(iii) Lyapunov function
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Theorem 2.4 If (2.4) holds, then the unique positive equilibrium point E* of the system (2.1) is
globally asymptotically stable.

Proof : Firstly, we use the method (i) to analyse the system (2.1). Consider

1
H(xi,x) = P x1 >0, x>0
Then
0 0
V-(Hg) = aTCl(Hgl)-l-aTCz(ng)

O (ufi), 9 (nfh
ox; \ x1x2 oxy \ x1x2

o [ fi o [ f

Hence by the Dulac’s criterion, there is no closed orbit in the first quadrant. From Lemma
2.1, we know that the unique positive equilibrium point E* is locally asymptotically stable. By
the Lemma 2.2 and the Poincaré-Bendixson theorem, it suffices to show that the unique positive
equilibrium point E* is globally asymptotically stable in the first quadrant.

Secondly, we introduce the method (ii) to analyse the global stability of the system (2.1). Now,
we want to show that the system (2.1) has no closed orbit in the first quadrant. Suppose on the
contrary that there is a T-periodic orbit T' = {(x;(¢),x2(¢)) | 0 < ¢ < T} in the first quadrant.

Compute
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_ dg1 | 0%

/OT{aaxl |:r]x1(f) (l—x‘K(f)) + 01X (z)xZ(;)}

)CQ(I)

+ aixz [rzxz(t) ( — K2> + ox (t)xz(f)} }dl

— /OT { {rl <1 - 2?(5”) +0Lz1x2(t)} + {rz (1 - leét)) +OL1zx1(t)] }df

. T i t) r X(t) n
= /0 [—xl(t)—kxz(t) —K2X2(l‘)] dt

Ta@ [T T, T
[ g [awars [ 20— 2 [

x1(T) x(T) 1 Tlp o
—dx +/ —dx —/ [x 1)+ —x t}dt
/xl(o) X1 ! 0»(0) X2 > o K; 1t) K> 2(0)

Since I' is a T-periodic,

x1(T) 1 x(T) 1
/ —dx; = 0 and / —dx; =
x1(0) X1 0 (0) X2

Hence we obtain that

This implies that all closed orbits of the system (2.1) in the first quadrant are orbitally stable.
Since every closed orbit is orbitally, there is a unique stable limit cycle in the first quadrant. That
is, the unique positive equilibrium point E* is unstable. However, by Lemma 2.1, E* is locally
asymptotically stable. Thus there is no periodic orbit in the first quadrant. By Lemma 2.2 and the
Poincaré-Bendixson theorem, it suffices to show that the unique positive equilibrium point E* is

globally asymptotically stable in the first quadrant.
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Theorem 2.5 If

r
o1 K

r
ak>

holds, then the unique positive equilibrium point E* of the system (2.1) is globally asymptotically

stable.

Proof : Now, we use the method (iii) to analyse the system (2.1). Let’s construct the following

Lyapunov function

V(x1,x%) =Vi(x1)+Va(x2)

where

V1 (xl) =

1 P )
Va(xp) = s (x2 —x; —x51n x*)

X1

X1 —x; —xIn—
1 — X In—

X1

2

on G = {(x1,x2)]x; > 0,x, > 0}. It is obvious that V(x1,x2) € C'(G,R) and V(x},x}) = 0. The

function V (x;,x;) satisfies

V(x1,x) > V(x],x5) =0

which holds for all (x;,x2) € G— {E*}. Then the time derivatives of V;(x1,x2),i = 1,2 computed

along the solution of the system (2.1) are



and

Va(x2)

K a1 Ky
o K

Lo
ey —x))
Lo

—x7)
)Cl) + 0621)62] (x1
Lo

*
—x7)
1
dl X1+ (X21X2> (x
(-7

1

X +
< l.xl (le X [0/

K

1 ri

* ok
)7 —Xx1 X125
- (x]
.7x xl —_— —

! o K
K

>k
— 7.xl.x2
X1X2
o5 1 n x4
1

»
—x})
D7+ (1 —x7) (2 — x5
s (x1—x7)
o
021
Vé(xz))&z
1 X3 o
-2
an
o
L2k
an X

)
x2> +0c12x1} (x2
1 . |:V2 (1 — FZ
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(2.5)
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r
= —- <Vz — x2+a12x1> (X2 —x3)
K,

1 < o, . T2 .
= — | =x—0px] — —x2+dpx | (xn—x3)
ap \Kz K;

1 r 1 1¥)
*
= — XX — ——

*\2 * * %
s ()7 — X2 + 275
o K o Ko

1 nr 1 nr
X4 — —Xx X — XX
ap Ko a2 K2

) *\2 * *
_ _ _ — 2.6
alsz(XZ x5)° 4 (x1 —x7) (x2 — x3) (2.6)

Therefore, the time derivative of V (x,x;) is given by

. d .
Vix,x) = EV(xl,xz)

= iV1 (x1) + in(xz)

dt dt
I *\2 * *
= _Otlel(xl_xl) + (x1 = x7) (%2 — x3)
rn
g =) (0 )2 )
r *\2 * * 2 *\2
= — X1 —x1)"+2(x1 —x7) (2 —x5) — ——(x2—x
e =) 4200 ) —) - ()
= =l =2 =200 —x}) (@2 — %) + (22 = x3)°]
1 *\2
+l —x)? = x| —Xx
(0 =20)? = e (=)
rn *\2
+(x —x3)% — 2—X
(2 =3) = (2 =)
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rn *\2
_ 1 _
(m,{z )(xz %)
< 0

This shows that V(x1,x;) < 0 on G. Therefore, the unique positive equilibrium point E* of the
system (2.1) is globally asymptotically stable on G.

Remark 2.6 In [3], Goh constructed a Lyapunov function to show that the unique positive

equilibrium point is globally asymptotically stable in a nonlinear model of mutualism.

3 THE MODEL WITH TIME DELAY

Consider a two-species Lotka-Volterra mutualistic system with time delay T modelled by

00 = 1) (1= 6= o)
() = () (1= 252 oz ) G.1)
with the initial conditions
x(8) = ¢;(0) >0, B¢ [—’570] , O EC([—LO],R) , =12 3.2)

Lemma 3.1  Every solution of the system (3.1) with the initial conditions (3.2) remains positive
forallt > 0.

Proof : Tt is true because

xi(t) =x (O)exp{/ot[rl (1 - xl(s_ﬂ) +0€21x2(s)]ds}

K;

() =nOep{ [In (1- 25 ) - oronsas

and x;(0) > O for i = 1,2. Therefore, we obtain that all solutions (x(¢),x2()) of the system (4.1)

with the initial conditions (3.2) are positive.

Lemma 3.2 Let (x(¢),x2(t)) denote the solution of (3.1) with the initial conditions (3.2).
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(a) If
limsup x(f) < oo (3.3)
t—o0
then
0< litminf x2(t) and 0< lilminf x1(f) < limsup x;(¢) < o0 3.4
e e t—o0
(b) If
limsup x (¢) < o0
t—o0
then

0< litminf xi(f) and 0< litminf x2(t) < limsup x,(¢) < o0

t—o0

(c) If there exists a My > 0 such that for all the positive solutions (x1(t),x2(t)) of the system
(3.1) with the initial conditions (3.2),

limsup x2(¢) < M, (3.5)

—o0

then there exists positive numbers my, my and My such that

my < 1i,fgglf x2(t) and m; < “,@}g}f x1(t) <limsup x; (1) < M, (3.6)

t—o0

(d) If there exists a My > 0 such that for all the positive solutions (x(t),x2(t)) of the system
(3.1) with the initial conditions (3.2),

limsup x(¢) < M

t—o00

then there exists positive numbers my, mp and M» such that

my < ligglf x1(r) and mp < li;nlglf x2(1) <limsup xp (1) < M,

t—00

Proof : We shall now prove the result using the technique developed in [5]. It is sufficient to prove
(a) and (c). Suppose (3.3) holds, then there exist M, > 0 and #; > 0 such that

0<x(t) <M, for t>n 3.7

which together with (4.1) yield

dx;it(t) _ XI(,)[”_I%xl(t—'c)+0t21xz(f)]

IN

X1 (t)[n — %xl (t—‘C) —I-Otlez] for t>1 (3.8)
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By the positivity of the solution and (3.8), we have

dx (t
allt( ) <xi(t)[n+oM] t>n (3.9

Integrating both sides of (3.9) on [t —1,¢], where ¢ > t; + T, we have

x1(t) < xp(t —)elnHoaM)T
That is,
xi(t—71) > xi (1) - e (NHo2M2)T (3.10)
It follows from (3.8) that fort >t +1

dx; (t)
dt -

X1 (l) (V] +(X21M2) — %ei(r'JraﬂMZ)ﬁc - X1 (t):|

_ L r .
= e ) [ W) el e xl(’)]

xl(t)

Ky (r1+091Mp) e(r+oa M)t
r

= (r1—|—(12]M2)x1(t) 1-—

This implies that

Ki(ri +001M2) r apayye —
r

x1(t) < M, for t>n @3.11)

for some #, > t; +7T. Then
On the other hand, positivity of the solution and (3.1) give

d
xdlit(l) = xl(t)[rl—I;;—I]xl(t—‘c)—koczlxz(t)]
> _n _} 3.12
2 X1 (l‘) |:I‘1 lel(l‘ ’C) ( )
> x(t) {rl—rl-Ml} for t>0n+71 (3.13)
K

Integrating both sides of (3.13) on [t —1,¢], where 7 > t, + 27, we have

x() > (1 —1)- R

That is,

(=T
X (t—1) <x(t)-e TR
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for t > t, +27. This, together with (3.12), gives

dx;t(’ L, [rl - I%xl (i — r)}
> xi(1) [rl - I% e T RMT, (I)}
t
= rlxl(t) 1- XI(ZI
Kl _e(”l_](illwl)ﬁC
It follows that
(rl—%Ml)T =

litminfxl (t) >K;-e m

and m; > 0. Similarly, it follows from (3.1) that

d
x;’t(t) = xz(l) [rz — ]’;—22)(2([ — ’C) —+ 012X (t):|
> x(1) [Vz - T)} (3.14)
K>
> ) (l’z— r2M2> for t >t +7 (3.15)
K;

Integrating both sides of (3.15) on [t —t,¢], where ¢ > #; + 27, we have

_n
x0(t) > 20t —1)- 2R

That is,
(12
o(t—1) <xa(t) e P RMIT

for t > t; 4+ 27. This, together with (3.14), gives

d)Cz(t) r
at > )CQ(I) |:r2 E)CQ (l ’C):|
> x2(t) [7’2 _n .e(rz,%Mz)rxz(t):|
K
x(1)
= H|1-—22
r2XI( ) Kz.e(rz_éMz)T]

It follows that
_n
liminfx, (¢) > K> D

t—o0

and my > 0. Thus, (3.6) holds. This completes the proof.
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Theorem 3.3 Suppose K1 Ky12001 — riry < 0 and the system (3.1) is uniformly persistent.

Assume that the delay T in (3.1) satisfies

2K2F1XT(K1 — r1M1T) > Kl(le)CZ(ZKlKQ +K2F1M1‘C+K1F2M2T)

2K 12x5(Ky — raMat) > Kyouox| (2K Ky + KiraMat+ Kor M)

(3.16)

(3.17)

where M| and My are defined in the Lemma 3.2. Then the unique positive equilibrium point E* of

the system (3.1) is globally asymptotically stable.

Proof : Define y(t) = (y1(t),y2(t)) by

From (3.1), we have

rixy
*71)’1 (t—1)+ 0L21x§y2(t)]
|

510 = [L4+3(0)] [

ya(t) = [1+y2(7)] [— @yz(t —T) + 02Xy (t)]

K,
Let | |
V00)) = e @ =l @)} + o D)~ Inf1 42200
then we have, from (3.18) and (3.19), that
Nol) = L n@n@ 1 y050)

og1xy  L4yi(r)  ouax] 1+y2(r)

rle
= - Y1 (O)y1 (£ =) 4291 ()t
Kraors, yi(t)y1(t —71) +2y1(t)y2(2)

x5
Kroupx]

Y2 ()y2(t —7)

rle !

S 0 [ylm—

Kiop1x,

Ayl (S)ds}

—T

rzxz

20 20 [ a1

Krau0x)

— () = 21 ()y2(6) + 33 ()] + 1 (1) + ¥3(2)

(3.18)

(3.19)

(3.20)
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IN

IN

rixy oy x5 2
— —1 1) — —1 t
(Klwz ) 0 (KQWT 300)

- [ -SG9+ o) fas

Ky01x5 —t K,

P50 [ 10 {—%Yz(s—f) T <s>}ds

Ky0uppx) -1 K>
—(1(2) —yz(f))z
rixy 5 nx; 2
— —1 1) — —1 t
(Kl(xmx; ) yi(t) (Kzoc]zx’[ ¥ (t)

rixj
Kion1x;

rlx* *
?llyl (s—1) 4+ o1x3y2 (s)} ds

n)- [ 1enel[-

—T

rx; /’ [ rx; . }
t)- 14+y(s)] | —==y2(s —T) + 0pox s)| ds
Koo, y2(t) H[ y2(s)] X y2(s — 1) + aiaxyyi (s)

rlx’[ 2 rpc; 2
_ 1) v — —1)20
(Klomx; ) B0) (muxT 30)

rle
Ki001x5

/t;[l +y1(s)] [— %yl (£)y1(s =) + 0213331 (t)yz(s)] ds

rX; /’ | [ X3 . ]
Kyooxt +y2(8)] | = =2 y2(1)y2(s = T) + oiaxiya (1)y1 (s) | ds
K>0l2x} tﬂ:[ y2(s)] K> y2(t)ya( ) 12x7y2(8)y1(s)

rixj ) 2 ( X ) 2
- —-1 1) — —1 t
(K10€21x§ yi(t) Ka0ox, ¥ (t)

rOLIXTx /t [1 ()} o T| (t) ( *T)| *| (f) ()|
—+ S R X S S
K 213 . V1 K yili)» + 0215 |y1(2)y2 d
1’2)63

t r2x§ * :|
—_— 14+ ya(s)] | =—==|ya(2 s —T)| + oyox t s)|| ds
Koo, /H[ y2(s)] [ &, 202 =)+ onxify(e)y (s)]

(3.21)
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By Lemma 3.2, there exists a 7 > 0 such that m; < x}[1+y;(t)] =x;(t) <M, fort > T, i=1,2.

Thenfort >T+1= f, we have from (3.21) that

H00) < (1) - (g2 1) 80

K](XQ]XZ Kz()(‘]z)cjlK

riM, ¢ rle "
— |y (¢ —T)|+a t d
&%@[;[mbme@ )+l (1) Iya(s)] | ds

raM, /’ rax; *
—= |y (t —T)|+a t d
o [ |22 0la(s=+ i@l (91

IN

rixj 2 x5 )
— —1 t)— —1 t
<K10621x§ > yl( ) <K20€12)€T y2( )

riM, {rle’C 2

rnxy (1o
yi(t)+
Kion1x;

s—71)ds
2K, t_le( )

2K, !

0621)6*1 0621)6* !
+ 220+ 22 [ 3eas
2 2 Jit

X 1 5
—= s—1)ds
2K, tir)’z( )

M, mX3T
2K, 2

yi(t) +
Krouox] ®)

0(12)6*17 0612)6* !
+ =0+ [ yis)ds
2 2 Jix

o rixj L r%MleT _rlMl‘t yz(t)
K10(21x§ 2K120L21x§ 2K, !
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X, | r%szz’c Myt ,
K>ouoxj 2KZau0xf 2Kz

2 * t t
rMix; 2 Ml/ 2
— S — dS-|- S dS
2K7001%5 [71)’1( 7) 2K, lit)’z()

2 * t t
raMx, / 2 M / 2
4+ —= S — dS + — s)ds
2](220612)61K tf'tyZ( R 2K, tftyl( )

Let
s [ [ k[
Vo(y(t = 7z—7 7)dzds
2(0(1)) 2K2a21x2 s yil 2[(1 s (2
V%MZ.X; /t ! 2( T)d d
P — Z— zas
2K22()C]2XT t—tJs 2
r2M2/ /
7)dzds
21(2 t—tJs yl
then
) M xt PMixt [t
V- 1 = ¥2t ‘C—#/ 2S—’Eds
200) = g toti—n -5 [ A=
rler b r1M1 >
— d
2K, ¥3 (1) 2K, r4)’2(5) S

2 2 *

raMax3t 5 rsMo>x o
(-1 - 5 2*/ (s —1)ds
2K5 0027 2K50u2x7 Ji—t

Mt 4 M, /t 2
t)— d
+ 2K, yi(t) 2K, t_TY1(S) B

Furthermore, from (3.22) and (3.24), for ¢t > T we have

* 2 *
. . rixj rlMlxl‘C rlMl’C rzMQT >
Vilv(t))+Va(y(t)) < — —1- — — t
1()7( )) 2()’( )) - <K1a21x; 2K120(21x§ 2K 2K, )71( )

2 * 2 *
riMixit 1 raMoxit 1
Va00) = 3 [ s+ 3252 [ 3(s)ds

2[(120(21)63 —1 2K220612XT -1

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
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then

2 *
r1M1xl’C 2

yi(®)

2 *
rlMl)ClT 2

yi(t—=1)

2K120621x§ !

V3(y(t))

ZKIZOLzlx;

2
VZMQ.X;T 5

(t) F%szé‘c 5
y _
2K22(112x’f 2

——=— (-1 3.27
2K220L12x’1‘ nl ) 627
Now define a Lyapunov function candidate V (y(¢)) as

V() =Vi(y(1)) +Va(y(1)) + Va(y(1)) (3.28)

Then, from (3.26) and (3.27), for ¢t > T we have

* 2 * o "
V() < — (”xl | MXT o nMiT Mot riMixe ) s

t 3.29
K01 x5 2KZop1xs 2K 2K 2Kann; yi(t) (3.29)
_ nx; rsMaxsT _ nMr Mt rMoxyT 21
Kaouaxy 2Kjou0x] 2K, 2Ki  2K30ux]

_ 2K1K2r1x>lk—2K12K2(12]x;—ZKQF%MUCT‘C—K]Kz(Xg]x;r]Ml’C—KIZ(XQ]XEI’QMQT y2(l‘)
2K12K20c21x§ !

2K1K2r2x§ — 2K22K1 OL]Q)CT —2K; r%szz’C — K KQ(X]szrzMz’C — Kzzoclzxfrler 2(1‘)
ZK%KQOCQUCZ 72

= (- B0 330
It follows from (3.16) and (3.17) that o« > Oand B > 0. Let w(s) = Ns? where N = min{a, B},
then w is nonnegative continuous on [0, ), w(0) = 0 and w(s) > 0 for s > 0. It follows from (3.29)

that fort > T
V(1) < =N () +33(0)] = =Ny = —w(ly(0)]) (3.3D)

Now, we want to find a function u such that V (y(¢)) > u(|y(¢)]). It follows from (3.20), (3.23) and
(3.26) that

VO0) 2 e ) =40 O]} +

{y2(t) —In[1 4+ y2(2)]} (3.32)

By the Taylor Theorem, we have

2
yi(t) —In[1 +y;(t)] = o yi(t) (3.33)

l+9i(t)]2
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where 0;(¢) € (0,y;(7)) or (y;(¢),0) fori = 1,2.
Casel : If 0 < 6;(r) < y;(t) fori = 1,2, then

i) ()
(14 i(1)]? < [1+6,1)]2 <yi (1)

By Lemma 3.2, it follows that fort > T
mi <x;[1+yi(t)] =x(t) <M; for i=1,2

Then (3.33) implies that

5\ 0 3
(M) y%(¢)§w<)f%(l‘) ,i=1,2

It follows from (3.31), (3.32) and (3.35) that forr > T.

1 i) 1 (1)
Viy(r) > : + '
@) = 20065 [1+6,(0)]7  20u2x, [1+6,(1)]2
| o 2 1 X 2
N 1 2 220 V(e
> g () s+ g (52 ) s

Y%
=
=
——
[\)
Q
I;‘J —_—
>
S
N
5|
N———
N}
[\
22
o
Ry
N
S
N———
IS}
——
=0

Il

=
=
=

=
=
o

Case2 : If —1 < y;(r) < 6;(t) <O fori=1,2, then

i) Y7 (1)
1+6:(0)) ~ [1+yi(0)]

yi(r) < [

In view of (3.34), (3.36) implies that

2 ¥\ 2
A< i< (L) =1

It follows from (3.31), (3.32) and (3.37) that fort > T

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)
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- 20(21)6; [1—|—9](I)]2 20612)61< [1—|—92(l‘)]2
> )+ 5 R0

20(21)63 ! 20(12)CT 2

1 )2 1 O\ 2

> X\ 2\ 2
2 e <M1) yi( +2a12xf (Mz) (1)
> N[0 +y30)]
= NP0

Case3 : If 0 < 01(r) < y1(t) and —1 < y»(r) < 02(fr) < 0, then it follows from
(3.31),(3.32),(3.35) and (3.37) that for > T

L0 0
20‘21)6; [1+91(l‘)]2 20(1sz [1+92(t)]2

S N ) T - 7
20(,21)63 M, 1 2(11sz 72

1 x\? 1 x\?
> L) V(e 22 Y3
- 20(21)6; (M]) yl( )+2a12x’{ (Mg yZ()
> N () +300)]

= NP

Cased : If —1 < y1(r) < 01(t) < 0 and 0 < 0,(¢) < y»(z), then it follows from
(3.31),(3.32),(3.35) and (3.37) that fort > T
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1 yi() 1 Y3 (1)
Vo) = 200155 [1+191(t)]2 T [1+292(t)]2

% 2
SO 1A 1(2) 0)

%
2001 Xy

1 X\ 1 x5\
> 1 2 t 2 2 t
- 2(121)63 <M1) yl( )+ 20(12)6’{ <M2 yz( )
> N D) +y50)]

= NP

Let u(s) = Ns?, then u is nonnegative continuous on [0,e0), #(0) = 0, u(s) > 0 for s > 0, and

lim u(s) = 4-o0. So, by Casel ~ Case4, we have

§—00

Vo) > u(y(@)) for 1>T (3.39)

Thus, the equilibrium point E£* of the system (4.1) is globally asymptotically stable.

4 Examples

In this section, we present several simple examples to illustrate the procedures of applying our

results.

Example 4.1  Consider the following system:

X1(6) = x1()B(I—=x1(t)) +x2(2)]
O @b
(1) = x)|[501-F)+ 28

Comparing the system (4.1) with the system (2.1), we get r; =3 , rn = % CJKi=1 , K, =
3,0=1,0p7= % and E* = (3,6). Then we conclude that the unique positive equilibrium
point E* of the system (4.1) is globally asymptotically stable by Theorem 4.1. The trajectory of
the system (4.1) is depicted in Figure (4.1).
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12

(1.5,10)

101

<N 6 (1.6)

(0.9,0.5)

Figure (4.1). The trajectory of the system (4.1).

Example 4.2  Consider the following system:

x1(t) = x()B(1—xi(t—1))+x()]
“4.2)
Xz(t) = XQ(Z‘) 7(1—7 +

Comparing the system (4.2) with the system (3.1), we getr; =3, = %, Ki=1,K=30;=1
and ap = % Moreover, the system (4.2) has the unique positive equilibrium point E* = (3,6).
We find that if the time delay t is small enough, then the unique positive equilibrium point E* of
the system (4.2) is globally asymptotically stable. The trajectory of the system (4.2) with T = 0.01
is depicted in Figure 4.2.
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12

P

Figure (4.2). The trajectory of the system (4.2) with T = 0.01.

Example 4.3  Consider the following system:

@) = x(O)B31-xi@t—1)+x@)

() = xn)|;(01-—5—)+

Comparing the system (4.3) with the system (3.1), we get ri =3 | rp, = %

JK =1

(4.3)

7K2:

3,0y =1andap = % Moreover, the system (5.3) has the unique positive equilibrium point

E* =(3,6). We find that if the time delay 7 is not small enough, then the unique positive equilib-

rium point £ of the system (4.3) may not be globally asymptotically stable. The trajectory of the

system (4.3) with T = 1 is depicted in Figure 4.3.
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Figure (4.3). The trajectory of the system (4.3) with T = 1.

S CONCLUSIONS

In this paper, we have shown that if at least one of the populations have a uniformly bounded,
then a Lotka-Volterra mutualistic system will be uniformly persistent. If the corresponding delayed
system is uniformly persistent, then the delayed system is globally asymptotically stable. We
believe that a Lotka-Volterra mutualistic system with multiple delay described as follows will be

an interested topic for future study.

xl(t) = x(1) |:r1(1 - 3%—1'51)) + o1 xp (2 —‘Cz):|
5.1
() = x() [rz(l — xz(IK_zﬁcﬁ)—i-(xlle(t—m)}
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