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Global Stability for the Lotka-Volterra Mutualistic
System with Time Delayy

Feng-Chun Hsu∗ Chao-Pao Ho∗

Abstract

In this paper, we are concerned with the dynamical behavior of a two-species Lotka-Volterra
mutualistic system with time delay. First of all, we use three different methods to discuss the global
stability of the unique positive equilibrium point of a two-species Lotka-Volterra mutualistic system
without time delay. Secondly, we study the change of the global stability for a two-species Lotka-Volterra
mutualistic system with time delay. Finally, we illustrative our results by some examples.
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1 Introduction

One of the most important problems in the Lotka-Volterra mutualistic system is the global
stability of mutualistic systems. The global stability analysis for mutualistic systems without time
delay has been done by some authors [1–3]. In [1], Brauer and Soudack gave some hypotheses so
that they can obtain complete information about the global behavior of solutions. In [2], Freedman
and Rai derived conditions for a positive equilibrium point of mutualistic system to be globally
asymptotically stable. In [3], Goh constructed a Lyapunov function to show that the unique posi-
tive equilibrium point is globally asymptotically stable in a nonlinear model of mutualism.

In recent years, the mutualistic systems were extended to include the time delays by some
authors [5, 9]. In [5], the authors obtained the conditions for the global stability of facultative
mutualism system with time delay by constructing a Lyapunov functional. In [9], Mukherjee
found out the global stability condition of facultative mutualism system with different time delays.
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In this paper, we consider a two-species Lotka-Volterra mutualistic system with time delay,

ẋ1(t) = x1(t)
[

r1(1−
x1(t − τ)

K1
)+α21x2(t)

]

ẋ2(t) = x2(t)
[

r2(1−
x2(t − τ)

K2
)+α12x1(t)

] (1.1)

with the initial conditions

xi(θ) = φi(θ) > 0 , θ ∈ [−τ,0] , φi ∈C([−τ,0],R) , i = 1,2 (1.2)

where · = d/dt, r1, r2, K1, K2, α12, α21 and τ are all positive constants. φi(t)(i = 1,2) are con-
tinuous bounded functions on the interval [−τ,0]. x1(t) and x2(t) denote the population densities
of two mutualistic populations.

The main purpose of this paper is to establish global stability of a two-species Lotka-Volterra
mutualistic system with time delay. In section 2, we introduce some useful definitions and theo-
rems. In section 3, we analyze the global stability of the Lotka-Volterra mutualistic system without
time delay by using Dulac’s Criterion plus Poincaré−Bendixson Theorem, the construction of the
Lyapunov function or stable limit cycle analysis. In section 4, we discuss the global stability of
the Lotka-Volterra mutualistic system with a single delay by constructing a Lyapunov functional.
In section 5, we illustrate our results by some examples.

2 THE MODEL WITHOUT TIME DELAY

Consider a two-species Lotka-Volterra mutualistic system without time delay modelled by

ẋ1 = x1

[
r1(1−

x1

K1
)+α21x2

]
≡ x1 f1(x1,x2) ≡ g1(x1,x2)

ẋ2 = x2

[
r2(1−

x2

K2
)+α12x1

]
≡ x2 f2(x1,x2) ≡ g2(x1,x2)

(2.1)

with the constraints

x1(t) > 0 , x2(t) > 0 for all t. (2.2)

where r1, r2, K1, K2, α12 and α21 are all positive constants. x1 and x2 denote the population
densities of two mutualistic populations. All we want to discuss is biological population, so we
just consider the first quadrant in the x1-x2 plane.
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Analysing the behavior of the system (2.1), firstly, we discuss the local stability of the equilib-
rium points of the system (2.1) by Hartman-Grobman Theorem.

Secondly, we want to analyse the global stability of the unique positive equilibrium point E∗

of the system (2.1).

2.1 Local Stability
Clearly, E = (0,0), Ẽ = (K1,0) and Ê = (0,K2) are the equilibrium points and E∗ = (x∗1,x

∗
2)

is the unique positive equilibrium point in the first quadrant of the system (2.1) with the initial
condition (2.2), where

x∗1 =
−r2K1(K2α21 + r1)
K1K2α12α21 − r1r2

, x∗2 =
−r1K2(K1α12 + r2)
K1K2α12α21 − r1r2

(2.3)

Remark 2.1 If

K1K2α12α21 − r1r2 < 0 (2.4)

then E∗ is the unique positive equilibrium point of the system (2.1).

Now let us analyse the local behavior of the system (2.1) at the equilibrium points E =
(0,0), Ẽ = (K1,0), Ê = (0,K2) and E∗ = (x∗1,x

∗
2). The Jacobian matrix of the system (2.1) takes

the form

J ≡


r1(1−

2x1

K1
)+α21x2 α21x1

α12x2 r2(1−
2x2

K2
)+α12x1


The Jacobian matrix of the system (2.1) at E is

J̄ =

 r1 0

0 r2


The eigenvalues λ1 = r1 , λ2 = r2 of J̄ are positive. Thus, the equilibrium point E of the system
(2.1) is unstable.

The Jacobian matrix of the system (2.1) at Ẽ is

J̃ =

 −r1 α21K1

0 r2 +α12K1


The eigenvalues of J̃ are λ1 = −r1 , λ2 = r2 + α12K1. Since λ1 < 0 and λ2 > 0, the equilibrium
point Ẽ of the system (2.1) is a saddle point. Furthermore, we know that

Γ1 = {(x1,x2) | x1 > 0,x2 = 0}
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is the stable manifold of the equilibrium point Ẽ.

The Jacobian matrix of the system (2.1) at Ê is

Ĵ =

 r1 +α21K2 0

α12K2 −r2


The eigenvalues of Ĵ are λ1 = r1 +α21K2 and λ2 = −r2. Since λ1 > 0 and λ2 < 0, the equilibrium
point Ê of the system (3.1) is a saddle point. Furthermore, we know that

Γ2 = {(x1,x2) | x1 = 0,x2 > 0}

is the stable manifold of the equilibrium point Ê.

Lemma 2.2 If

K1K2α12α21 − r1r2 < 0

then the unique positive equilibrium point E∗ of the system (2.1) is locally asymptotically stable.

Proof : The Jacobian matrix of the system (2.1) at E∗ is

J∗ =


− r1

K1
x∗1 α21x∗1

α12x∗2 − r2

K2
x∗2


Since

det(J∗) =
r1r2

K1K2
x∗1x∗2 −α12α21x∗1x∗2

= x∗1x∗2

(
r1r2

K1K2
−α12α21

)

= x∗1x∗2

(
r1r2 −K1K2α12α21

K1K2

)
> 0

and
trace(J∗) = − r1

K1
x∗1 −

r2

K2
x∗2

= −
(

r1

K1
x∗1 +

r2

K2
x∗2

)
< 0

the unique positive equilibrium point E∗ of the system (2.1) is locally asymptotically stable.
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Lemma 2.3 All solutions (x1(t),x2(t)) of the system (2.1) with the initial condition (2.2) are

positive and bounded.

Proof : Firstly, we want to show that all solutions (x1(t),x2(t)) of the system (2.1) with the initial
condition (2.2) are positive. In other words, if the initial point (x1(0),x2(0)) is in the first quadrant,
so is the solution (x1(t),x2(t)) for all t > 0. Since x1-axis and x2-axis are the solutions of the
system (2.1), the trajectory of the solutions (x1(t),x2(t)) with the initial point (x1(0),x2(0)) in the
first quadrant cannot cross with x1-axis and x2-axis by the uniqueness of the solution. Therefore,
we know that all solutions (x1(t),x2(t)) of the system (2.1) with the initial condition (2.2) are
positive.

Secondly, we want to show that all solutions (x1(t),x2(t)) of the system (2.1) with the initial
condition (2.2) are bounded. That is, x1(t) and x2(t) are both bounded for all t ≥ 0. From the
Figure 2.1, we find that all solutions (x1(t),x2(t)) of the system (2.1) with the initial condition
(2.2) are bounded.

x1

x2

f1(x1, x2) = 0

f2(x1, x2) = 0

(K1, 0)

(0, K2)

E∗

IV I

IIIII

Figure (2.1). The slope of the trajectory of the system (2.1)

2.2 Global Stability
Now, we want to use the following three methods to analyse the global stability of the unique

positive equilibrium point E∗ of the system (2.1) :

(i) Dulac’s criterion plus Poincaré- Bendixson theorem

(ii) Stable limit cycle analysis

(iii) Lyapunov function
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Theorem 2.4 If (2.4) holds, then the unique positive equilibrium point E∗ of the system (2.1) is

globally asymptotically stable.

Proof : Firstly, we use the method (i) to analyse the system (2.1). Consider

H(x1,x2) =
1

x1x2
, x1 > 0, x2 > 0

Then

∇ · (Hg) =
∂

∂x1
(Hg1)+

∂
∂x2

(Hg2)

=
∂

∂x1

(
x1 f1

x1x2

)
+

∂
∂x2

(
x2 f2

x1x2

)

=
∂

∂x1

(
f1

x2

)
+

∂
∂x2

(
f2

x1

)

=
1
x2

· ∂
∂x1

f1 +
1
x1

· ∂
∂x2

f2

=
1
x2

·
(
− r1

K1

)
+

1
x1

·
(
− r2

K2

)

= −
(

r1

K1x2
+

r2

K2x1

)
< 0

Hence by the Dulac’s criterion, there is no closed orbit in the first quadrant. From Lemma
2.1, we know that the unique positive equilibrium point E∗ is locally asymptotically stable. By
the Lemma 2.2 and the Poincaré-Bendixson theorem, it suffices to show that the unique positive
equilibrium point E∗ is globally asymptotically stable in the first quadrant.

Secondly, we introduce the method (ii) to analyse the global stability of the system (2.1). Now,
we want to show that the system (2.1) has no closed orbit in the first quadrant. Suppose on the
contrary that there is a T -periodic orbit Γ = {(x1(t),x2(t)) | 0 ≤ t ≤ T} in the first quadrant.
Compute
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4 =
Z

Γ

(
∂g1

∂x1
+

∂g2

∂x2

)
ds

=
Z T

0

{
∂

∂x1

[
r1x1(t)

(
1− x1(t)

K1

)
+α21x1(t)x2(t)

]

+
∂

∂x2

[
r2x2(t)

(
1− x2(t)

K2

)
+α12x1(t)x2(t)

]}
dt

=
Z T

0

{[
r1

(
1− 2x1(t)

K1

)
+α21x2(t)

]
+

[
r2

(
1− 2x2(t)

K2

)
+α12x1(t)

]}
dt

=
Z T

0

[
ẋ1(t)
x1(t)

− r1

K1
x1(t)+

ẋ2(t)
x2(t)

− r2

K2
x2(t)

]
dt

=
Z T

0

ẋ1(t)
x1(t)

dt − r1

K1

Z T

0
x1(t)dt +

Z T

0

ẋ2(t)
x2(t)

dt − r2

K2

Z T

0
x2(t)dt

=
Z x1(T )

x1(0)

1
x1

dx1 +
Z x2(T )

x2(0)

1
x2

dx2 −
Z T

0

[
r1

K1
x1(t)+

r2

K2
x2(t)

]
dt

Since Γ is a T -periodic,

Z x1(T )

x1(0)

1
x1

dx1 = 0 and
Z x2(T )

x2(0)

1
x2

dx2 = 0

Hence we obtain that

4 = −
Z T

0

[
r1

K1
x1(t)+

r2

K2
x2(t)

]
dt

< 0

This implies that all closed orbits of the system (2.1) in the first quadrant are orbitally stable.
Since every closed orbit is orbitally, there is a unique stable limit cycle in the first quadrant. That
is, the unique positive equilibrium point E∗ is unstable. However, by Lemma 2.1, E∗ is locally
asymptotically stable. Thus there is no periodic orbit in the first quadrant. By Lemma 2.2 and the
Poincaré-Bendixson theorem, it suffices to show that the unique positive equilibrium point E∗ is
globally asymptotically stable in the first quadrant.
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Theorem 2.5 If

r1

α21K1
> 1 ,

r2

α12K2
> 1

holds, then the unique positive equilibrium point E∗ of the system (2.1) is globally asymptotically

stable.

Proof : Now, we use the method (iii) to analyse the system (2.1). Let’s construct the following
Lyapunov function

V (x1,x2) = V1(x1)+V2(x2)

where

V1(x1) =
1

α21

(
x1 − x∗1 − x∗1 ln

x1

x∗1

)

V2(x2) =
1

α12

(
x2 − x∗2 − x∗2 ln

x2

x∗2

)

on G = {(x1,x2)|x1 > 0,x2 > 0}. It is obvious that V (x1,x2) ∈C1(G,R) and V (x∗1,x
∗
2) = 0. The

function V (x1,x2) satisfies

V (x1,x2) > V (x∗1,x
∗
2) = 0

which holds for all (x1,x2) ∈ G−{E∗}. Then the time derivatives of Vi(x1,x2), i = 1,2 computed
along the solution of the system (2.1) are



89

V̇1(x1) = V ′
1(x1)ẋ1

=
1

α21
(1− x∗1

x1
) · ẋ1

=
1

α21
· ẋ1

x1
(x1 − x∗1)

=
1

α21
·
[

r1

(
1− x1

K1

)
+α21x2

]
(x1 − x∗1)

=
1

α21
·
(

r1 −
r1

K1
x1 +α21x2

)
(x1 − x∗1)

=
1

α21
·
(

r1

K1
x∗1 −α21x∗2 −

r1

K1
x1 +α21x2

)
(x1 − x∗1)

=
1

α21
· r1

K1
x∗1x1 −

1
α21

· r1

K1
(x∗1)

2 − x∗2x1 + x∗1x∗2

− 1
α21

· r1

K1
x2

1 +
1

α21

r1

K1
x∗1x1 + x1x2 − x∗1x2

= − r1

α21K1
(x1 − x∗1)

2 +(x1 − x∗1)(x2 − x∗2) (2.5)

and

V̇2(x2) = V ′
2(x2)ẋ2

=
1

α12
(1− x∗2

x2
) · ẋ2

=
1

α12
· ẋ2

x2
(x2 − x∗2)

=
1

α12
·
[

r2

(
1− x2

K2

)
+α12x1

]
(x2 − x∗2)
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=
1

α12
·
(

r2 −
r2

K2
x2 +α12x1

)
(x2 − x∗2)

=
1

α12
·
(

r2

K2
x∗2 −α12x∗1 −

r2

K2
x2 +α12x1

)
(x2 − x∗2)

=
1

α12
· r2

K2
x∗2x2 −

1
α12

· r2

K2
(x∗2)

2 − x∗1x2 + x∗1x∗2

− 1
α12

· r2

K2
x2

2 +
1

α12

r2

K2
x∗2x2 + x1x2 − x1x∗2

= − r2

α12K2
(x2 − x∗2)

2 +(x1 − x∗1)(x2 − x∗2) (2.6)

Therefore, the time derivative of V (x1,x2) is given by

V̇ (x1,x2) =
d
dt

V̇ (x1,x2)

=
d
dt

V1(x1)+
d
dt

V2(x2)

= − r1

α21K1
(x1 − x∗1)

2 +(x1 − x∗1)(x2 − x∗2)

− r2

α12K2
(x2 − x∗2)

2 +(x1 − x∗1)(x2 − x∗2)

= − r1

α21K1
(x1 − x∗1)

2 +2(x1 − x∗1)(x2 − x∗2)−
r2

α12K2
(x2 − x∗2)

2

= −[(x1 − x∗1)
2 −2(x1 − x∗1)(x2 − x∗2)+(x2 − x∗2)

2]

+(x1 − x∗1)
2 − r1

α21K1
(x1 − x∗1)

2

+(x2 − x∗2)
2 − r2

α12K2
(x2 − x∗2)

2

= −[(x1 − x∗1)− (x2 − x∗2)]
2 −

(
r1

α21K1
−1

)
(x1 − x∗1)

2
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−
(

r2

α12K2
−1

)
(x2 − x∗2)

2

< 0

This shows that V̇ (x1,x2) < 0 on G. Therefore, the unique positive equilibrium point E∗ of the
system (2.1) is globally asymptotically stable on G.

Remark 2.6 In [3], Goh constructed a Lyapunov function to show that the unique positive
equilibrium point is globally asymptotically stable in a nonlinear model of mutualism.

3 THE MODEL WITH TIME DELAY

Consider a two-species Lotka-Volterra mutualistic system with time delay τ modelled by

ẋ1(t) = x1(t)
[

r1(1−
x1(t − τ)

K1
)+α21x2(t)

]

ẋ2(t) = x2(t)
[

r2(1−
x2(t − τ)

K2
)+α12x1(t)

]
(3.1)

with the initial conditions

xi(θ) = φi(θ) > 0 , θ ∈ [−τ,0] , φi ∈C([−τ,0],R) , i = 1,2 (3.2)

Lemma 3.1 Every solution of the system (3.1) with the initial conditions (3.2) remains positive

for all t ≥ 0.

Proof : It is true because

x1(t) = x1(0)exp
{Z t

0
[r1

(
1− x1(s− τ)

K1

)
+α21x2(s)]ds

}

x2(t) = x2(0)exp
{Z t

0
[r2

(
1− x2(s− τ)

K2

)
+α12x1(s)]ds

}
and xi(0) > 0 for i = 1,2. Therefore, we obtain that all solutions (x1(t),x2(t)) of the system (4.1)
with the initial conditions (3.2) are positive.

Lemma 3.2 Let (x1(t),x2(t)) denote the solution of (3.1) with the initial conditions (3.2).
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(a) If

limsup
t→∞

x2(t) < ∞ (3.3)

then

0 < liminf
t→∞

x2(t) and 0 < liminf
t→∞

x1(t) ≤ limsup
t→∞

x1(t) < ∞ (3.4)

(b) If

limsup
t→∞

x1(t) < ∞

then

0 < liminf
t→∞

x1(t) and 0 < liminf
t→∞

x2(t) ≤ limsup
t→∞

x2(t) < ∞

(c) If there exists a M2 > 0 such that for all the positive solutions (x1(t),x2(t)) of the system

(3.1) with the initial conditions (3.2),

limsup
t→∞

x2(t) ≤ M2 (3.5)

then there exists positive numbers m1, m2 and M1 such that

m2 ≤ liminf
t→∞

x2(t) and m1 ≤ liminf
t→∞

x1(t) ≤ limsup
t→∞

x1(t) ≤ M1 (3.6)

(d) If there exists a M1 > 0 such that for all the positive solutions (x1(t),x2(t)) of the system

(3.1) with the initial conditions (3.2),

limsup
t→∞

x1(t) ≤ M1

then there exists positive numbers m1, m2 and M2 such that

m1 ≤ liminf
t→∞

x1(t) and m2 ≤ liminf
t→∞

x2(t) ≤ limsup
t→∞

x2(t) ≤ M2

Proof : We shall now prove the result using the technique developed in [5]. It is sufficient to prove
(a) and (c). Suppose (3.3) holds, then there exist M2 > 0 and t1 > 0 such that

0 < x2(t) ≤ M2 for t ≥ t1 (3.7)

which together with (4.1) yield

dx1(t)
dt

= x1(t)[r1 −
r1

K1
x1(t − τ)+α21x2(t)]

≤ x1(t)[r1 −
r1

K1
x1(t − τ)+α21M2] for t ≥ t1 (3.8)



93

By the positivity of the solution and (3.8), we have

dx1(t)
dt

≤ x1(t)[r1 +α21M2] t ≥ t1 (3.9)

Integrating both sides of (3.9) on [t − τ, t], where t ≥ t1 + τ, we have

x1(t) ≤ x1(t − τ)e(r1+α21M2)τ

That is,
x1(t − τ) ≥ x1(t) · e−(r1+α21M2)τ (3.10)

It follows from (3.8) that for t ≥ t1 + τ

dx1(t)
dt

≤ x1(t)
[
(r1 +α21M2)−

r1

K1
e−(r1+α21M2)τ · x1(t)

]

= (r1 +α21M2)x1(t)
[

1− r1

K1(r1 +α21M2) · e(r1+α21M2)τ · x1(t)
]

= (r1 +α21M2)x1(t)

1− x1(t)
K1(r1+α21M2)

r1
e(r1+α21M2)τ


This implies that

x1(t) ≤
K1(r1 +α21M2)

r1
e(r1+α21M2)τ ≡ M1 for t ≥ t2 (3.11)

for some t2 ≥ t1 + τ. Then
On the other hand, positivity of the solution and (3.1) give

dx1(t)
dt

= x1(t)[r1 −
r1

K1
x1(t − τ)+α21x2(t)]

≥ x1(t)
[

r1 −
r1

K1
x1(t − τ)

]
(3.12)

≥ x1(t)
[

r1 −
r1

K1
·M1

]
for t ≥ t2 + τ (3.13)

Integrating both sides of (3.13) on [t − τ, t], where t ≥ t2 +2τ, we have

x1(t) ≥ x1(t − τ) · e(r1−
r1
K1

M1)τ

That is,
x1(t − τ) ≤ x1(t) · e

−(r1−
r1
K1

M1)τ
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for t ≥ t2 +2τ. This, together with (3.12), gives

dx1(t)
dt

≥ x1(t)
[

r1 −
r1

K1
x1(t − τ)

]

≥ x1(t)
[

r1 −
r1

K1
· e−(r1−

r1
K1

M1)τx1(t)
]

= r1x1(t)

[
1− x1(t)

K1 · e
(r1−

r1
K1

M1)τ

]

It follows that
liminf

t→∞
x1(t) ≥ K1 · e

(r1−
r1
K1

M1)τ ≡ m1

and m1 > 0. Similarly, it follows from (3.1) that

dx2(t)
dt

= x2(t)
[

r2 −
r2

K2
x2(t − τ)+α12x1(t)

]

≥ x2(t)
[

r2 −
r2

K2
x2(t − τ)

]
(3.14)

≥ x2(t)
(

r2 −
r2

K2
M2

)
for t ≥ t1 + τ (3.15)

Integrating both sides of (3.15) on [t − τ,t], where t ≥ t1 +2τ, we have

x2(t) ≥ x2(t − τ) · e(r2−
r2
K2

M2)τ

That is,
x2(t − τ) ≤ x2(t) · e

−(r2−
r2
K2

M2)τ

for t ≥ t1 +2τ. This, together with (3.14), gives

dx2(t)
dt

≥ x2(t)
[

r2 −
r2

K2
x2(t − τ)

]

≥ x2(t)
[

r2 −
r2

K2
· e−(r2−

r2
K2

M2)τx2(t)
]

= r2x1(t)

[
1− x2(t)

K2 · e
(r2−

r2
K2

M2)τ

]

It follows that
liminf

t→∞
x2(t) ≥ K2 · e

(r2−
r2
K2

M2)τ ≡ m2

and m2 > 0. Thus, (3.6) holds. This completes the proof.
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Theorem 3.3 Suppose K1K2α12α21 − r1r2 < 0 and the system (3.1) is uniformly persistent.

Assume that the delay τ in (3.1) satisfies

2K2r1x∗1(K1 − r1M1τ) > K1α21x∗2(2K1K2 +K2r1M1τ+K1r2M2τ) (3.16)

2K1r2x∗2(K2 − r2M2τ) > K2α12x∗1(2K1K2 +K1r2M2τ+K2r1M1τ) (3.17)

where M1 and M2 are defined in the Lemma 3.2. Then the unique positive equilibrium point E∗ of

the system (3.1) is globally asymptotically stable.

Proof : Define y(t) = (y1(t),y2(t)) by

y1(t) =
x1(t)− x∗1

x∗1
, y2(t) =

x2(t)− x∗2
x∗2

From (3.1), we have

ẏ1(t) = [1+ y1(t)]
[
− r1x∗1

K1
y1(t − τ)+α21x∗2y2(t)

]
(3.18)

ẏ2(t) = [1+ y2(t)]
[
− r2x∗2

K2
y2(t − τ)+α12x∗1y1(t)

]
(3.19)

Let
V1(y(t)) =

1
α21x∗2

{y1(t)− ln[1+ y1(t)]}+
1

α12x∗1
{y2(t)− ln[1+ y2(t)]} (3.20)

then we have, from (3.18) and (3.19), that

V̇1(y(t)) =
1

α21x∗2
· y1(t)ẏ1(t)

1+ y1(t)
+

1
α12x∗1

· y2(t)ẏ2(t)
1+ y2(t)

= − r1x∗1
K1α21x∗2

· y1(t)y1(t − τ)+2y1(t)y2(t)

− r2x∗2
K2α12x∗1

· y2(t)y2(t − τ)

= − r1x∗1
K1α21x∗2

y1(t)
[

y1(t)−
Z t

t−τ
ẏ1(s)ds

]

− r2x∗2
K2α12x∗1

y2(t)
[

y2(t)−
Z t

t−τ
ẏ2(s)ds

]

− [y2
1(t)−2y1(t)y2(t)+ y2

2(t)]+ y2
1(t)+ y2

2(t)
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= −
(

r1x∗1
K1α21x∗2

−1
)

y2
1(t)−

(
r2x∗2

K2α12x∗1
−1

)
y2

2(t)

+
r1x∗1

K1α21x∗2
y1(t) ·

Z t

t−τ
[1+ y1(s)]

{
− r1x∗1

K1
y1(s− τ)+α21x∗2y2(s)

}
ds

+
r2x∗2

K2α12x∗1
y2(t) ·

Z t

t−τ
[1+ y2(s)]

{
− r2x∗2

K2
y2(s− τ)+α12x∗1y1(s)

}
ds

−(y1(t)− y2(t))2

≤ −
(

r1x∗1
K1α21x∗2

−1
)

y2
1(t)−

(
r2x∗2

K2α12x∗1
−1

)
y2

2(t)

+
r1x∗1

K1α21x∗2
y1(t) ·

Z t

t−τ
[1+ y1(s)]

[
− r1x∗1

K1
y1(s− τ)+α21x∗2y2(s)

]
ds

+
r2x∗2

K2α12x∗1
y2(t) ·

Z t

t−τ
[1+ y2(s)]

[
− r2x∗2

K2
y2(s− τ)+α12x∗1y1(s)

]
ds

= −
(

r1x∗1
K1α21x∗2

−1
)

y2
1(t)−

(
r2x∗2

K2α12x∗1
−1

)
y2

2(t)

+
r1x∗1

K1α21x∗2

Z t

t−τ
[1+ y1(s)]

[
− r1x∗1

K1
y1(t)y1(s− τ)+α21x∗2y1(t)y2(s)

]
ds

+
r2x∗2

K2α12x∗1

Z t

t−τ
[1+ y2(s)]

[
− r2x∗2

K2
y2(t)y2(s− τ)+α12x∗1y2(t)y1(s)

]
ds

≤ −
(

r1x∗1
K1α21x∗2

−1
)

y2
1(t)−

(
r2x∗2

K2α12x∗1
−1

)
y2

2(t)

+
r1x∗1

K1α21x∗2

Z t

t−τ
[1+ y1(s)]

[
r1x∗1
K1

|y1(t)y1(s− τ)|+α21x∗2|y1(t)y2(s)|
]

ds

+
r2x∗2

K2α12x∗1

Z t

t−τ
[1+ y2(s)]

[
r2x∗2
K2

|y2(t)y2(s− τ)|+α12x∗1|y2(t)y1(s)|
]

ds (3.21)
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By Lemma 3.2, there exists a T > 0 such that mi ≤ x∗i [1 + yi(t)] = xi(t) ≤ Mi for t > T, i = 1,2.

Then for t > T + τ ≡ T̂ , we have from (3.21) that

V̇1(y(t)) ≤ −
(

r1x∗1
K1α21x∗2

−1
)

y2
1(t)−

(
r2x∗2

K2α12x∗1
−1

)
y2

2(t)

+
r1M1

K1α21x∗2

Z t

t−τ

[
r1x∗1
K1

|y1(t)||y1(s− τ)|+α21x∗2|y1(t)||y2(s)|
]

ds

+
r2M2

K2α12x∗1

Z t

t−τ

[
r2x∗2
K2

|y2(t)||y2(s− τ)|+α12x∗1|y2(t)||y1(s)|
]

ds

≤ −
(

r1x∗1
K1α21x∗2

−1
)

y2
1(t)−

(
r2x∗2

K2α12x∗1
−1

)
y2

2(t)

+
r1M1

K1α21x∗2

{
r1x∗1τ
2K1

y2
1(t)+

r1x∗1
2K1

Z t

t−τ
y2

1(s− τ)ds

+
α21x∗2τ

2
y2

1(t)+
α21x∗2

2

Z t

t−τ
y2

2(s)ds
}

+
r2M2

K2α12x∗1

{
r2x∗2τ
2K2

y2
2(t)+

r2x∗2
2K2

Z t

t−τ
y2

2(s− τ)ds

+
α12x∗1τ

2
y2

2(t)+
α12x∗1

2

Z t

t−τ
y2

1(s)ds
}

= −
(

r1x∗1
K1α21x∗2

−1− r2
1M1x∗1τ

2K2
1 α21x∗2

− r1M1τ
2K1

)
y2

1(t)
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−
(

r2x∗2
K2α12x∗1

−1− r2
2M2x∗2τ

2K2
2 α12x∗1

− r2M2τ
2K2

)
y2

2(t)

+
r2

1M1x∗1
2K2

1 α21x∗2

Z t

t−τ
y2

1(s− τ)ds+
r1M1

2K1

Z t

t−τ
y2

2(s)ds

+
r2

2M2x∗2
2K2

2 α12x∗1

Z t

t−τ
y2

2(s− τ)ds+
r2M2

2K2

Z t

t−τ
y2

1(s)ds (3.22)

Let

V2(y(t)) =
r2

1M1x∗1
2K2

1 α21x∗2

Z t

t−τ

Z t

s
y2

1(z− τ)dzds+
r1M1

2K1

Z t

t−τ

Z t

s
y2

2(z)dzds

+
r2

2M2x∗2
2K2

2 α12x∗1

Z t

t−τ

Z t

s
y2

2(z− τ)dzds

+
r2M2

2K2

Z t

t−τ

Z t

s
y2

1(z)dzds (3.23)

then

V̇2(y(t)) =
r2

1M1x∗1τ
2K2

1 α21x∗2
y2

1(t − τ)− r2
1M1x∗1

2K2
1 α21x∗2

Z t

t−τ
y2

1(s− τ)ds

+
r1M1τ
2K1

y2
2(t)−

r1M1

2K1

Z t

t−τ
y2

2(s)ds

+
r2

2M2x∗2τ
2K2

2 α12x∗1
y2

2(t − τ)− r2
2M2x∗2

2K2
2 α12x∗1

Z t

t−τ
y2

2(s− τ)ds

+
r2M2τ
2K2

y2
1(t)−

r2M2

2K2

Z t

t−τ
y2

1(s)ds (3.24)

Furthermore, from (3.22) and (3.24), for t > T̂ we have

V̇1(y(t))+V̇2(y(t)) ≤−
(

r1x∗1
K1α21x∗2

−1− r2
1M1x∗1τ

2K2
1 α21x∗2

− r1M1τ
2K1

− r2M2τ
2K2

)
y2

1(t) (3.25)

V3(y(t)) =
r2

1M1x∗1τ
2K2

1 α21x∗2

Z t

t−τ
y2

1(s)ds+
r2

2M2x∗2τ
2K2

2 α12x∗1

Z t

t−τ
y2

2(s)ds (3.26)
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then

V̇3(y(t)) =
r2

1M1x∗1τ
2K2

1 α21x∗2
y2

1(t)−
r2

1M1x∗1τ
2K2

1 α21x∗2
y2

1(t − τ)

+
r2

2M2x∗2τ
2K2

2 α12x∗1
y2

2(t)−
r2

2M2x∗2τ
2K2

2 α12x∗1
y2

2(t − τ) (3.27)

Now define a Lyapunov function candidate V (y(t)) as

V (y(t)) = V1(y(t))+V2(y(t))+V3(y(t)) (3.28)

Then, from (3.26) and (3.27), for t > T̂ we have

V̇ (y(t)) ≤−
(

r1x∗1
K1α21x∗2

−1− r2
1M1x∗1τ

2K2
1 α21x∗2

− r1M1τ
2K1

− r2M2τ
2K2

− r2
1M1x∗1τ

2K2
1 α21x∗2

)
y2

1(t) (3.29)

−
(

r2x∗2
K2α12x∗1

−1− r2
2M2x∗2τ

2K2
2 α12x∗1

− r2M2τ
2K2

− r1M1τ
2K1

− r2
2M2x∗2τ

2K2
2 α12x∗1

)
y2

2(t)

= −
(

2K1K2r1x∗1 −2K2
1 K2α21x∗2 −2K2r2

1M1x∗1τ−K1K2α21x∗2r1M1τ−K2
1 α21x∗2r2M2τ

2K2
1 K2α21x∗2

)
y2

1(t)

−
(

2K1K2r2x∗2 −2K2
2 K1α12x∗1 −2K1r2

2M2x∗2τ−K1K2α12x∗1r2M2τ−K2
2 α12x∗1r1M1τ

2K2
1 K2α21x∗2

)
y2

2(t)

≡− αy2
1(t)−βy2

2(t) (3.30)

It follows from (3.16) and (3.17) that α > 0 and β > 0. Let w(s) = N̂s2 where N̂ = min{α, β},
then w is nonnegative continuous on [0,∞), w(0) = 0 and w(s) > 0 for s > 0. It follows from (3.29)
that for t > T̂

V̇ (y(t)) ≤−N̂[y2
1(t)+ y2

2(t)] = −N̂|y(t)|2 = −w(|y(t)|) (3.31)

Now, we want to find a function u such that V (y(t)) ≥ u(|y(t)|). It follows from (3.20), (3.23) and
(3.26) that

V (y(t)) ≥ 1
α21x∗2

{y1(t)− ln[1+ y1(t)]}+
1

α12x∗1
{y2(t)− ln[1+ y2(t)]} (3.32)

By the Taylor Theorem, we have

yi(t)− ln[1+ yi(t)] =
y2

i (t)
2[1+θi(t)]2

(3.33)
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where θi(t) ∈ (0,yi(t)) or (yi(t),0) for i = 1,2.

Case1 : If 0 < θi(t) < yi(t) for i = 1,2, then

y2
i (t)

[1+ yi(t)]2
<

y2
i (t)

[1+θi(t)]2
< y2

i (t) (3.34)

By Lemma 3.2, it follows that for t ≥ T

mi ≤ x∗i [1+ yi(t)] = xi(t) ≤ Mi for i = 1,2 (3.35)

Then (3.33) implies that

(
x∗i
Mi

)2

y2
i (t) ≤

y2
i (t)

[1+θi(t)]2
< y2

i (t) , i = 1,2 (3.36)

It follows from (3.31), (3.32) and (3.35) that for t ≥ T .

V (y(t)) ≥ 1
2α21x∗2

· y2
1(t)

[1+θ1(t)]2
+

1
2α12x∗1

· y2
2(t)

[1+θ2(t)]2

≥ 1
2α21x∗2

·
(

x∗1
M1

)2

y2
1(t)+

1
2α12x∗1

·
(

x∗2
M2

)2

y2
2(t)

≥ min

{
1

2α21x∗2

(
x∗1
M1

)2

,
1

2α12x∗1

(
x∗2
M2

)2
}

[y2
1(t)+ y2

2(t)]

≡ Ñ |y(t)|2

Case2 : If −1 < yi(t) < θi(t) < 0 for i = 1,2, then

y2
i (t) <

y2
i (t)

[1+θi(t)]2
<

y2
i (t)

[1+ yi(t)]2
(3.37)

In view of (3.34), (3.36) implies that

y2
i (t) <

y2
i (t)

[1+θi(t)]2
≤

(
x∗i
mi

)2

y2
i (t) , i = 1,2 (3.38)

It follows from (3.31), (3.32) and (3.37) that for t ≥ T
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V (y(t)) ≥ 1
2α21x∗2

· y2
1(t)

[1+θ1(t)]2
+

1
2α12x∗1

· y2
2(t)

[1+θ2(t)]2

>
1

2α21x∗2
· y2

1(t)+
1

2α12x∗1
· y2

2(t)

≥ 1
2α21x∗2

(
x∗1
M1

)2

y2
1(t)+

1
2α12x∗1

(
x∗2
M2

)2

y2
2(t)

≥ Ñ [y2
1(t)+ y2

2(t)]

= Ñ |y(t)|2

Case3 : If 0 < θ1(t) < y1(t) and −1 < y2(t) < θ2(t) < 0, then it follows from
(3.31),(3.32),(3.35) and (3.37) that for t ≥ T

V (y(t)) ≥ 1
2α21x∗2

· y2
1(t)

[1+θ1(t)]2
+

1
2α12x∗1

· y2
2(t)

[1+θ2(t)]2

>
1

2α21x∗2
·
(

x∗1
M1

)2

y2
1(t)+

1
2α12x∗1

· y2
2(t)

≥ 1
2α21x∗2

(
x∗1
M1

)2

y2
1(t)+

1
2α12x∗1

(
x∗2
M2

)2

y2
2(t)

≥ Ñ [y2
1(t)+ y2

2(t)]

= Ñ |y(t)|2

Case4 : If −1 < y1(t) < θ1(t) < 0 and 0 < θ2(t) < y2(t), then it follows from
(3.31),(3.32),(3.35) and (3.37) that for t ≥ T
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V (y(t)) ≥ 1
2α21x∗2

· y2
1(t)

[1+θ1(t)]2
+

1
2α12x∗1

· y2
2(t)

[1+θ2(t)]2

>
1

2α21x∗2
· y2

1(t)+
1

2α12x∗1
·
(

x∗2
M2

)2

y2
2(t)

≥ 1
2α21x∗2

(
x∗1
M1

)2

y2
1(t)+

1
2α12x∗1

(
x∗2
M2

)2

y2
2(t)

≥ Ñ [y2
1(t)+ y2

2(t)]

= Ñ |y(t)|2

Let u(s) = Ñs2, then u is nonnegative continuous on [0,∞), u(0) = 0, u(s) > 0 for s > 0, and
lim
s→∞

u(s) = +∞. So, by Case1 ∼ Case4, we have

V (y(t)) ≥ u(|y(t)|) for t ≥ T (3.39)

Thus, the equilibrium point E∗ of the system (4.1) is globally asymptotically stable.

4 Examples

In this section, we present several simple examples to illustrate the procedures of applying our
results.

Example 4.1 Consider the following system:

ẋ1(t) = x1(t) [3(1− x1(t))+ x2(t)]

ẋ2(t) = x2(t)
[

3
2
(1− x2(t)

3
)+

x1(t)
2

] (4.1)

Comparing the system (4.1) with the system (2.1), we get r1 = 3 , r2 = 3
2 , K1 = 1 , K2 =

3 , α21 = 1 , α12 = 1
2 and E∗ = (3,6). Then we conclude that the unique positive equilibrium

point E∗ of the system (4.1) is globally asymptotically stable by Theorem 4.1. The trajectory of
the system (4.1) is depicted in Figure (4.1).
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Figure (4.1). The trajectory of the system (4.1).

Example 4.2 Consider the following system:

ẋ1(t) = x1(t) [3(1− x1(t − τ))+ x2(t)]

ẋ2(t) = x2(t)
[

3
2
(1− x2(t − τ)

3
)+

x1(t)
2

] (4.2)

Comparing the system (4.2) with the system (3.1), we get r1 = 3, r2 = 3
2 , K1 = 1, K2 = 3, α21 = 1

and α12 = 1
2 . Moreover, the system (4.2) has the unique positive equilibrium point E∗ = (3,6).

We find that if the time delay τ is small enough, then the unique positive equilibrium point E∗ of
the system (4.2) is globally asymptotically stable. The trajectory of the system (4.2) with τ = 0.01
is depicted in Figure 4.2.



104

0 1 2 3 4 5 6
0

2

4

6

8

10

12

x
1

x 2

(0.9,0.5) 

(1,6) 

(5,9) 

(5.5,4) 

(5.5,0.6) 

(1.5,10) 

Figure (4.2). The trajectory of the system (4.2) with τ = 0.01.

Example 4.3 Consider the following system:

ẋ1(t) = x1(t) [3(1− x1(t − τ))+ x2(t)]

ẋ2(t) = x2(t)
[

3
2
(1− x2(t − τ)

3
)+

x1(t)
2

] (4.3)

Comparing the system (4.3) with the system (3.1), we get r1 = 3 , r2 = 3
2 , K1 = 1 , K2 =

3 , α21 = 1 and α12 = 1
2 . Moreover, the system (5.3) has the unique positive equilibrium point

E∗ = (3,6). We find that if the time delay τ is not small enough, then the unique positive equilib-
rium point E∗ of the system (4.3) may not be globally asymptotically stable. The trajectory of the
system (4.3) with τ = 1 is depicted in Figure 4.3.
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Figure (4.3). The trajectory of the system (4.3) with τ = 1.

5 CONCLUSIONS

In this paper, we have shown that if at least one of the populations have a uniformly bounded,
then a Lotka-Volterra mutualistic system will be uniformly persistent. If the corresponding delayed
system is uniformly persistent, then the delayed system is globally asymptotically stable. We
believe that a Lotka-Volterra mutualistic system with multiple delay described as follows will be
an interested topic for future study.

ẋ1(t) = x1(t)
[

r1(1−
x1(t − τ1)

K1
)+α21x2(t − τ2)

]

ẋ2(t) = x2(t)
[

r2(1−
x2(t − τ3)

K2
)+α12x1(t − τ4)

] (5.1)
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具時滯參數之 Lotka-Volterra 互利共生系統之整體穩

定性 
 

徐楓淳    何肇寶 

摘    要 

我們分析具時滯參數之 Lotka-Volterra 互利共生系統之整體穩定性。首先，我們利用三種不同的方

法分析不具時滯參數之 Lotka-Volterra 互利共生系統之整體穩定性。緊接著，我們分析具時滯參數之

Lotka-Volterra 互利共生系統之整體穩定性。最後，我們用實例及電腦軌跡圖說明之。 
 
關鍵詞：共生系統,時滯參數,整體穩定性,Lyapunov 涵數。 

 




