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Abstract

In this thesis, we propose a variant of the ANSI X9.62 ECDS/A dWe a brief introduction to the
digital signature algorithm in chapter 2, and then give thgidconcepts of the elliptic curve cryptosystems
in chapter 3. The next chapter includes the elliptic curvsioa of DSA, and finally a variant of ECDSA
will be given in chapter 5.

1 Introduction

The Digital Signature Algorithm was specified in a U.S. Goveent Federal Information Pro-
cessing Standard called the Digital Signature Standasdelturity is based on the computational
intractability of the discrete logarithm problem in priroeder subgroups dfZ/pZ)*.

Elliptic curve cryptosystems were invented by Neal Kobéited Victor Miller in 1985. They
can be viewed as elliptic curve analogues of the older dis¢ogarithm cryptosystems in which
the subgroup ofZ/pZ)* is replaced by the group of points on an elliptic curve oveméfi
field. The mathematical basis for the security of ellipticx®icryptosystems is the computational
intractability of the elliptic curve discrete logarithmgiiem.

Since the Elliptic Curve Digital Logarithm Problem appetose significantly harder than
the Digital Logarithm Problem, the strength-per-key-bisubstantially greater in elliptic curve
systems than in conventional discrete logarithm systenmsis,Tsmaller parameters can be used
in Elliptic Curve Cryptosystem than with Digital Logaritheystems but with equivalent levels
of security. The advantages that can be gained from smadiempeters include speed (faster
computations) and smaller keys and certificates. Thesengatyes are especially important in
environments where processing power, strong space, bdtigvar power consumption is con-
strained.

The Elliptic Curve Digital Signature Algorithm (ECDSA) iké elliptic curve analogue of the
Digital Signature Algorithm. ECDSA was first proposed in 298 Scott Vanstone in response of
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NIST (Nation Institute of Standards and Technology) regf@spublic comments on their pro-
posal for Digital Signature Schemes. It was accepted in 8% ISO (International Standards
Organization) standard (ISO 14888-3), accepted in 1999 a#\SI (American National Stan-
dards Institute) standard (ANSI X9.62), and accepted ir02@0an IEEE (Institute of Electrical
and Electronics Engineers) standard (IEEE 1363-2000) #R8 Btandards (FIPS 186-2). It is
also under consideration for inclusion in some other IS@ddeds. In this thesis, we propose a
variant of the ANSI X9.62 ECDSA.

We give a brief introduction of the digital signature aldlom in chapter 2, and then give the
basic concepts of the elliptic curve cryptosystems in adrapt The next chapter comes the elliptic
curve version of DSA and finally a variant of ECDSA will be givie chapter 5.

2 Digital Signature Algorithm

2.1 DiscretelLogarithm Problems
Fix a primep. Leta andp be two nonzero integers mgoand suppose

B=a* (modp). (2.1)

The problem of finding is called the discrete logarithm problem (DLP). It is easgdampute
o* mod p, but solvinga* = 3 for x is probably hard.

2.2 TheDigital Signature Schemes

The conventional handwritten signature on a document id tseertify that the signer is
responsible for the content of the document. The signatupdysically a part of the document
and while forgery is certainly possible, it is difficult to do convincingly. Trying to mimic a
handwritten signature in a digital medium leads to a difficsince cut and paste operations can
be used to create a perfect forgery. Thus, we need to have afwagning messages digitally
which is functionally equivalent to a physical signatunat, Wwhich is at least as resistant to forgery
as its physical counterpart.

Schemes which provide this functionality are called Dig&anature Schemes. A Digital
Signature Scheme will have two components, a private sigaigorithm which permits a user
to securely sign a message and a public verification alguoritthich permits anyone to verify
that the signature is authentic. The signing algorithm s¢edbind” a signature to a message in
such a way that the signature can not be pulled out and usedrt@asother document, or have
the original message modified and the signature remain.vEld practical reasons it would be
necessary for both algorithms to be relatively fast and @&lscomputers such as smart cards are
to be used, the algorithms can not be too computationallypbexn
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2.3 Hash Function

A hash functionH is a transformation that takes an inputand returns a fixed-size string,
which is called the hash valde(that is,h = H(m)). Hash functions with just this property have a
variety of general computational uses, but when employedyiptography, the hash functions are
usually chosen to have some additional properties.

The basic requirements for a cryptographic hash functieraarfollows.

e The input can be of any length.

The output has a fixed length.

e H(m) is relatively easy to compute for any givem
e H(m) is one-way.

e H(m) is collision-free.

A hash functiorH is said to beone-way if it is hard to invert, where “hard to invert” means that
given a hash valub, it is computationally infeasible to find some input such thaH (my) = h.

If, given a messagen, it is computationally infeasible to find a messagenot equal tom
such thaH (my) = H(mp), thenH is said to be a weakly collision-free hash function.

A strongly collision-free hash functiod is one for which it is computationally infeasible to
find any two messages; andmy such that (my) = H(nmy)

The hash value represents concisely the longer messagewmneéat from which it was com-
puted; this value is called the message digest. One can tliinkmessage digest as a “digital
fingerprint” of the larger document. Examples of well knovash functions are MD2 and MD5
and SHA .

2.4 TheDigital Signature Algorithm (DSA)

The DSA was proposed in August 1991 by U.S. National Ingtinft Standards and Tech-
nology (NIST) and was specified in a U.S. Government Fedafafmation Processing Standard
(FIPS 186) called th®igital Sgnature Sandard (DSS). The DSA can be viewed as a variant of
the EIGamal signature scheme. Its security is based on tteetability of the discrete logrithm
problem in prime-order subgroup @£/ pZ)*.

e DSA DOMAIN PARAMETER GENERATION
Domain parameter are generated for each entity in a paatiseturity domain.
1. Select a 160-bit prime and a 1024-bit prime with the property thag|p — 1.

2. Select an elemerit € (Z/pZ)* and computeg = h(P-1/4 (mod p). (Repeat until
g#1)

3. Domain parameters apgqg andg.
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e DSA KEY PAIR GENERATION
Each entity A in the domain with domain parametgrsy, g) does the following:
1. Select a random or pseudo-random integauch that I<K x < q— 1.
2. Computey =g* (mod p).
3. As public key isy; A's private key isx.
e DSA SIGNATURE GENERATION
To sign a message, A does the following:
Select a random or pseudo-random intégauch that I< k < q— 1.
ComputeX = g¢ (mod p) andr = X (modq). If r = 0 then go to step 1.
Computek—! (modq).
ComputeH (m) = SHA-1(m).

Computes = k~1(H(m)+xr) (modgq). If s= 0 then go to step 1.

o g M w0 NP

A's signature for the messageis (r,s).

e DSA SIGNATURE VERIFICATION
To verify A's signature(r,s) on m, B obtains authentic copies of A's domain parameters
(p,0,9) and public keyy and does the following:

Verify thatr ands are integers in the intervél, q— 1].

ComputeH (m) = SHA-1(m).

Computev=s1 (mod p).

Computau; = H(m)w (modq) anduz = rw (modq).

ComputeX = g'1y*2 (mod p) andv =X (modq).

o g &M w0 NP

Accept the signature if and onlyvf=r.

e PROOF THAT SIGNATURE VERIFICATION WORKS
If a signature(r,s) on a message was indeed generated by A, thes- k—1(H(m) + xr)
(mod g). Rearranging gives

o = gsfl(H(m)qur)
gsle(m)Jrs*lrx

_ gH(m)wyrw
= gy
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3 Elliptic Curves Cryptosystems

3.1 Elliptic Curvesover Finite Field Fp = Z/pZ

Let p> 3 be an odd prime. An elliptic curve over[F is defined by an equation of the form
y? =X +ax+bh, (3.1)

wherea,b € Fp, and 43+ 270% # 0 mod p. The setE(F,) consists of all pointgx,y), x €
Fp, y € Fp that satisfy the defining equation3, together with a special poiot called the point
at infinity.

Example: (Elliptic curve overF23) Let p = 23 and consider the elliptic cuni: y? = x° + x+ 4
defined oveifa3. Note that 43 + 27b% = 4+ 432=436= 22 mod 23, s is indeed an elliptic
curve. The points iiE(F23) areo and the following:

(0,2), (0,21), (1,11), (L12) (4.7),
(4,16), (7,3), (7,20, (8,8), (8,15),
(9,11), (9,12, (10,5), (10,18), (11,9),
(11,14), (1311), (1312), (14,5), (14.18),
(156), (1517), (17,9), (17,14), (18,9),
(18,14), (22,5), (22,19).

Addition formula: There is a rule, called tlchord-and-tangent rule, for adding two points on
an elliptic curveE(F,) to give a third elliptic curve point. Together with this atidih operation,
the set of point& (Fp) forms a group witho serving as its identity. It is this group that is used in
the construction of elliptic curve cryptosystems.

The addition rule is best explained geometrically. Pet (x1,y1) andQ = (x2,y2) be two
distinct points on an elliptic curvé. Then thesum of P andQ, denotedR = (X3, y3), is defined as
follows. First draw the line througR andQ; this line intersects the elliptic curve in a third point.
ThenRis the reflection of this point in the-axis. This is depicted in Figure 3.1. The elliptic curve
in the figure consists of two parts, the ellipse-like figurd #re infinite curve.

If P = (x1,y1), then thedouble of P, denotedR = (xs,y3), is defined as follows. First draw
the tangent line to the elliptic curve Bt This line intersects the elliptic curve in a second point.
ThenRiis the reflection of this point in the-axis. This is depicted in Figure 3.2.
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The following algebraic formulae for the sum of two pointglahe double of a point can be

derived from the geometric description.
1. LetP = (x1,y1) € E(Fp).ThenP+0 =0 +P=Pforall pe E(Fp).

2. If P=(x1,y1) € E(Fp), then(xy,y1) + (x1,—y1) = 0. (The point(xy,—Yy1) is denoted by
—P, and is called theegative of P; observe that-P is indeed a point on the curve.)

3. (Addition Formula) LeP = (x1,y1), Q= (X2,¥2) € E(Fp).. ThenP+Q = (x3,y3) and the
formula ofxg andy, are

X3 = M—x1—X
y3 = m(Xx1—X3)—Vi.
where
Z_Q,ﬁP#Q
m =
3x§+a7 tP=0

1
Example: Let p = 23 and consider the elliptic curg: y> = x3 + x+ 4 defined ovel,3.

1. (Point addition) LeP = (4,7), Q = (13/11) € E(F23).ThenP + Q = (X3,y3) is computed
as follows:

11-7

(13-4

v = (1)

)2—-4-13=-8=23 (mod 23.
4-15)—7=-40=6 (mod 23.

HenceP+ Q= (15,6).
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2. (Point doubling) LeP = (4,7). Then 2 =P+ P = (x4,ya) is computed as follows:

o 3(4)2+1

= 14

3(4)2+1
14

)2-8=217=10 (mod 23.

ya = ( )(4—10)—7=-97=18 (mod 23.

Hence 2 = (10,18).

3.2 Elliptic Curve Cryptosystems

Several approaches to encryption (or decryption) usinpgtiellcurves have been analyzed.
This paper describes one of them. The first task in this sysémencode the plaintext message
m to be sent as ary point Py It is the pointPy, that will be encrypted as a cipher text and
subsequently decrypted. Note that we cannot simply endmmessage as theor y coordinate
of a point, because not all such coordinates arfé(imodp). There are approaches to encoding.
We developed a scheme that will be reported elsewhere. Asthdtkey exchange system, an en-
cryption (or decryption) system requires a pdgand an elliptic groufe( modp) as parameters.
Each user A selects a private key and generates a public key

Par = aaG.

To encrypt and send a messdg@eto B, A chooses a random positive integeaind produces the
cipher textC, consisting to the pair of points

Cm = {XG7 Pm+ XPB}
Note that A has used B’s public ké3s. To decrypt the cipher text, B multiplies the first point in
the pair by B’s secret key and subtracts the result from thersgpoint:
Pm+ XPs — ng(xG) = Pm+ Xx(NgG) — ng(xG) = P

A has masked the messagg by addingxPs to it.

Nobody but A knows the value of so even thougRg is a public key, nobody can remove the
maskxPz. However, A also includes a “clue,” which is enough to remtheemask if one knows
the private keyng. For an attacker to recover the message, the attacker wauédth compute
givenG andxG, which is hard.

4 Elliptic Curve DSA (ECDSA)

4.1 Elliptic Curve DLP (ECDLP)
The elliptic curve discrete logarithm problem is the cost@ne of much of present-day elliptic
curve cryptography. It relies on the natural group law on@simgular elliptic curve which allows
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one to add points on the curve together. Given an elliptivekrover a finite fieldF, a point on
that curve P, and another point you know to be an integer multiple of tluan{Q, the “problem”
is to find the integen such thanP = Q.

The problem is computationally difficult unless the curve ha'bad” number of points over
the given field, where the term “bad” encompasses variousatmns of numbers of points which
make the elliptic curve discrete logarithm problem breddéaBor example, if the number of points
on E overF is the same as the number of element& athen the curve is vulnerable to attack. It
is because of these issues that point-counting on elliptieas is such a hot topic in elliptic curve
cryptography.

Example: In the elliptic curve group defined by = x3 + 9x+ 17 overF,3, What is the discrete
logarithmk of Q = (4,5) to the basé = (16,5)?
Ans: One way to find is to compute multiples d? until Q is found. The first few multiples

of Pare:
P=(16,5), 2P =(20,20), 3P =(14,14),

4P = (19,20), 5P =(13,10), 6P=(7,3),
7P =(8,7), 8P =(12,17), 9P=(4,5).
Since P = (4,5) = Q, the discrete logarithm d@ to the basd isk = 9.
4.2 Elliptic Curve DSA (ECDSA)

This section describes the procedures for generating antyiag signatures using the
ECDSA.

e DOMAIN PARAMETER GENERATION
The domain parameter for ECDSA consist of a suitably choBigtie cure E defined over
a finite field[", of characteristig, and a base poir@ € Ep(a, b) with ordern.
1. Select a random or pseudo-random integauch that I<K x < n—1.
2. ComputeQ = xG.
3. As public key isQ; As private key isx.
e ECDSA SIGNATURE GENERATION
To sign a message, an entity A with domain parametefp, Ep(a,b), G,n) and associated
key pair(x, Q) does the following:
1. Select an integdrsuch that I< k <n—1.
2. Compute&kQ = (x1,¥1).
3. Compute =x; (modn). If r =0 then go to step 1.
4. Computek—! (modn).
5. Compute SHA-Im) and convert this string to an integdfm).
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6. Computes=k~1(H(m)+xr) (modn). If s=0, then go to step 1.
7. As signature for the messageis (r,s).
e ECDSA SIGNATURE VERIFICATION
To verify A's signature(r,s) on m, B obtains an authentic copy of A's domain parameter
(p,Ep(a,b),G,n) and associated public ke&y. B then does the following:
1. Verify thatr andsare integers in the intervél,n— 1].
Compute SHA-Im) and convert this string to an integd(m).
Computev =s! (modn).
Computau; = H(m)w (modn) anduz = rw (modn).
ComputeX = (x2,y2) = u1G+ u2Q.

If X = 0, then reject the signature. Otherwise, computex, (mod n).

N oo gk~ w D

Accept the signature if and onlyvf=r.

e PROOF THAT SIGNATURE VERIFICATION WORKS
If a signature(r,s) on a message was indeed generated by A, thes- k~1(H(m) + xr)
(modn). Rearranging gives

kG = s i(H(m)+x)G (modn)
= sHmMG+srxG (modn)
= H(mMWG+rwQ (modn)
= wnuG+uQ (modn).

Thusui G+ u2Q = (ug 4+ ud)G = kG, and sov = r as required.

e RATIONALE FOR CHECKS ON AND sIN SIGNATURE VERIFICATION.

Step g of signature verification checks thandsare integers in the intervéll, n— 1]. These
checks can be performed very efficiently, and are prudensureain light of known attacks
on related EIGamal signature schemes which do not perfoesetbhecks. The following is
a plausible attack on ECDSA if the check 0 (and, more generally, 0 modn) is not
performed. Suppose that A is using the elliptic cuy¥e= x3 + ax+ b overFp,, whereb is

a quadratic residue modufg and suppose that A uses select a base @iat(0,/b) of
prime ordem. (It is plausible that all entities may select a base poinhwicoordinate in
order to minimize the size of domain parameters.) An advesn now forge A's signature
on any messag® of its choice by computingd (m) =SHA-1(m). It can easily be checked
that(r = 0,s=H(m)) is a valid signature fom.
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Comparing DSA and ECDSA. Conceptually, the ECDSA is simgiyam from the DSA
by replacing the subgroup of orderof (Z/pZ)* generated by with the subgroup of
points on an elliptic curve that are generateddyThe only significant difference between
ECDSA and DSAis in the generationofThe DSA does this by taking the random element
X = g“ mod p and reducing it modulg, thus obtaining an integer in the interjalq — 1].
The ECDSA generatesin the interval[1,n — 1] by taking thex-coordinate of the random
pointkG and reducing it modula.

4.3 DSA VS ECDSA

DSA ECDSA
Selectp, q, x, q/p—1, SelectEp(a,b), X,
and 1< x < Q. and 1< x < n.
Key Selecth € [1, p— 1], compute SelectG € Ep(a,b) with ordern
. g=h(P-/9 (mod p) and compute
generation «
y=g* (mod p) Q=dG
public key:(p, 0, g, ¥) public key : (Ep(a,b), p,G,n,Q)
private key :x private key :x
Selectk, 1<k < n. Selectk, 1< k< q.
Signature r = (g modp) (modaq) kG = (x1,y1), r=x1 (modn)
generation | s=kY(H(m)+xr) (modq) s=k 1(H(m)+xr) (modn)
(r,s) is the signature ofn. (r,s) is the signature ofn.
w=s"1 (modq) w=s"1 (modn)
up =H(m)w (modq) up =H(m)w (modn)
Signature u =rw (modq) Uz =rw (modn)
verification U1G+ uQ = (X2,¥2),
v = (g“1y*2 mod p) (modq) v=Xx2 (modn)
vV =r = accept the signature. v =r = accept the signature.

4.4 An Example of ECDSA

Example: Let p = 114973; the elliptic curvé& : y> = x3 — 3x+ 69424 and a base poi@ =

(1157042257 with ordern = 114467; seleck = 86109 therQ = xG = (634528549, and the
messagen = “worldof” it's hash valueH (m) = 1789679805, the signature for the messags

(r,s) as following:

e ECDSA SIGNATURE as following:

1. Seleck =84430suchthat¥ k<n-—1.
2. ComputekG = (1170510585, r = 31167 (mod 114973,
3. Computes=k 1(H(m)+xr) = 82722 (mod 114973.
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e ECDSA VERIFICATION as following:

1. Computev =s ! = 83035 (mod 114973.
2. Compute

uy = H(mMw=71001 (mod 114973
u = rw=2381909 (mod 114973

3. Compute

wG = (6693153304
wQ = (8897041780,

UG+ UQ = (3116731627 andv = 31167 (mod 114973,

\Y

31167 (mod 114973

r 31167 (mod 114973

We obtainv =r, that is accept the signature.

5 A variation of ECDSA

5.1 Algorithm
A variant of ECDSA.

e ECDSA DOMAIN PARAMETER GENERATION
The domain parameter for ECDSA consist of a suitably choligtie cure E defined over
afinite field[F,, of characteristig, and a base poir@ € Ep(a,b) with ordern.
1. Select a random or pseudo-random integauch that I<K x < n—1.
2. ComputeQ = xG.
3. As public key isQ; As private key isx.
e ECDSA SIGNATURE GENERATION

To sign a message, an entity A with domain parametefp, Ep(a,b), G,n) and associated
key pair(x, Q) does the following:

1. Select two integerig, ky such that I< kg, kg <n—1.
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2. Comput; G = (x1,y1) andkaG = (X2, V2).

3. Compute; =x; (modn) andri =x (modn). If r; =0 andr; = 0 then go to step
1.

4. Computek;* (modn).
5. Compute SHA-Im) and convert this string to an integdfm).
6. Computes=k; *(H(m)ky +x(r1+r1)) (modn). If s=0, then go to step 1.
7. As signature for the messageis (r1, ).
e ECDSA SIGNATURE VERIFICATION
To verify A's signature(r1,s) on m, B obtains an authentic copy of A's domain parameter
(p,Ep(a,b), G, n) and associated public k&y. B then does the following:
1. Verify thatr; andr; are integers in the intervél, n— 1.
2. Compute SHA-{m) and convert this string to an integefm).
3. Computev=s"t (modn).
4. Computeu; = H(m)wkz (modn) anduz = (r1+r2)w (modn).
5. ComputeX = (X3,y3) = u1G + u2Q.
6. If X = 0, then reject the signature. Otherwise, computexs (modn).
7. Accept the signature if and onlyf=r;.
e PROOF THAT SIGNATURE VERIFICATION WORKS

If a signature(r1,s) on a message was indeed generated by A, ther- k; *(H (m)k; +
X(r1+r2)) (modn). Rearranging gives

kG = s i(H(mk+x(r1+r2)G (modn)
= s H(MkG+s ri+r2)xG (modn)
= H(mwkaG+ (ri+r2)wQ (modn)
= uG+wQ (modn).

Thusu; G+ uQ = (uz + upd)G = k3G, and sov = r; as required.
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ECDSA variant ECDSA

SelectEp(a,b), X, SelectEp(a,b), X,

and 1< x<n. and 1< x < n.
Key SelectG € Ep(a,b) with ordern | SelectG € Ep(a,b) with ordern

. and compute and compute

generation

Q=dG Q=dG

public key : (Ep(a,b), p,G,n,Q) |public key : (Ep(a,b),p,G,n,Q)

private key :x private key :x

Selectk, 1<k < n. Selectky, ko, 1< kg, ko < n.
Signature kG = (X;|_7y;|_)7 r= Xl( modn) k]_G = (X;|_7y;|_)7 = Xj_( modn)
generation keG i 02,Y2), 12 = Xz(modn)

s=k1(H(m) -+ xr)( modn) s=ky (H(m)kz +x(r1 +r2))(modn)

(r,s) is the signature ofn. (r1,s) is the signature afn.

w = s~%(modn) w = s (modn)

u; = H(m)w( modn) u; = H(m)wkz( modn)
Signature up = rw(modn) Uz = (r1+rz)w( modn)
verification u1G+ uQ = (X2,¥2), u1G+ uQ = (x3,¥3),

vV = Xo( modn) v = X3( modn)

vV =r = accept the signature. vV =r1 = accept the signature.

5.3 Examples

Example: Let p = 114973; the elliptic curvé& : y? = x3 — 3x+ 69424 and a base poi@ =
(1157042257 with ordern = 114467; seleck = 86109 therQ = xG = (634528549, and the
messagen = “worldof” the hash value i#1(m) = 1789679805, the signature for the message

is (r1, s) as following:

e ECDSA SIGNATURE as following:

1. Seleck; = 32685k, = 43508 such that ¥ ki, ko <n-—1.

2. Compute

kiG
koG

(1170510585, r; = 11705 (mod 114973
(406059439, r, =4060 (mod 114973

3. Computes = k; *(H(m)kz +x(r1 +r2)) = 31509 (mod 114973.

e ECDSA SIGNATURE as following:

1. Computev=s1 = 71694 (mod 114973.
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2. Compute

up = H(mkow=57445 (mod 114973
Uz = (ri+r2)w==8752 (mod 114973.

3. Compute

wG = (8385523496
wQ = (3751296852,

UG+ UQ = (1170510585 andv = 11705 (mod 114973,

v = 11705 (mod 114973
11705 (mod 114973

r
We obtainv =r, that is accept the signature.

Example: Let p = 150197; the elliptic curvé& : y? = x3 — 3x+ 45624 and a base poi@ =
(4864094626 with ordern = 150033; select = 52414 therQ = xG = (15837 75466; and the
messagen = “ecdsanew from monkey” the hash valueH$m) = 596493798, the signature for
the messagmis (r1, s) as following:

e ECDSA SIGNATURE as following:

1. Seleck; = 18506k, = 56012 such that ¥ k1, ky <n—1.

2. Compute
kG = (7886650297, r; = 78866 (mod 150197
koG = (538203610, rp=53820 (mod 150197.
3. Computes = k; *(H(m)kz +x(r1 +r2)) = 105358 (mod 150197.
e ECDSA VERIFICATION as following:

1. Computev =s! = 13843 (mod 150197.

2. Compute

up H(m)kow = 50883 (mod 150197
up = (ri+r2)w=68312 (mod 150197.
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3. Compute

ulG
u2Q

(77938110897
(18615114143,

UG+ UQ = (7886650297 andv = 78866 (mod 150197

v = 78866 (mod 150197
r, = 78866 (mod 150197.

We obtainv =r, that is accept the signature.

5.4 Security Analysis
The reason why our scheme is better than original one isvioiig:

1. In the original ECDSA. The secreftsuse to sign two or more messages should generated
independently of each other. In particular, a differentetlcshould signed; otherwise, the
private keyx can be recovered. Note that if a secure random or pseudeirandmber
generator is used, then the chance of generating a repgeadduae is negligible. To see how
private keys can be recovered if secrets are repeated, Seipipat the same secietvas
used to generate ECDSA signatufes; ) and(r,sz) on two different messages; andmy.

Then

“Y(H(my) +xr) (modn)
“L(H(mp) +xr)  (modn),

s = Kk
2 = K
whereH (m) = SHA-1(m;) andH (np) = SHA-1(mp). Then

kss = H(m)+xr (modn)
ks, = H(mp)+xr (modn).
Subtraction give&(s; — ) = H(m) —H(mp) (modn). If s3 # s, (mod n), which occurs

with overwhelming probability, thek = (s; —s) "1 (H(my) —H(mp)) (modn). Thus, an
adversary can determitkgand then use this to recover

2. On our scheme, if we use the same sekrek, was used to generate ECDSA signatures
(r1,s1) and(rq,s2) on two different messages, andnmy. Then

(my)ka +X(r1+r2))  (modn)

so= k'
1 (H(mp)ko +X(r1+12))  (modn),

H
S = kll(H
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whereH (m) = SHA-1(m;) andH (np) = SHA-1(mp). Then

kiss = H(m)ke+x(ri+r2) (modn)
ki, = H(m)ka+x(ri+r2) (modn).

Subtraction givek; (s — ) = (H(mp) —H(mp) )k (modn). Evenifs; #s, (modn), we obtain
the relation equation &6 (s1 —s2) = (H (m1) —H (my) )ko. We can not determinkeby this equation
and then use this to recoverHence, our scheme is more security.
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