
Tunghai Science Vol. 8: 109−126
July, 2006

109

On the Elliptic Curve Digital Signature Algorithm

Hung-Zih Liao∗ Yuan-Yuan Shen∗

Abstract

In this thesis, we propose a variant of the ANSI X9.62 ECDSA. We give a brief introduction to the

digital signature algorithm in chapter 2, and then give the basic concepts of the elliptic curve cryptosystems

in chapter 3. The next chapter includes the elliptic curve version of DSA, and finally a variant of ECDSA

will be given in chapter 5.

1 Introduction

The Digital Signature Algorithm was specified in a U.S. Government Federal Information Pro-

cessing Standard called the Digital Signature Standard. Its security is based on the computational

intractability of the discrete logarithm problem in prime-order subgroups of(Z/pZ)×.

Elliptic curve cryptosystems were invented by Neal Koblitzand Victor Miller in 1985. They

can be viewed as elliptic curve analogues of the older discrete logarithm cryptosystems in which

the subgroup of(Z/pZ)× is replaced by the group of points on an elliptic curve over a finite

field. The mathematical basis for the security of elliptic curve cryptosystems is the computational

intractability of the elliptic curve discrete logarithm problem.

Since the Elliptic Curve Digital Logarithm Problem appearsto be significantly harder than

the Digital Logarithm Problem, the strength-per-key-bit is substantially greater in elliptic curve

systems than in conventional discrete logarithm systems. Thus, smaller parameters can be used

in Elliptic Curve Cryptosystem than with Digital Logarithmsystems but with equivalent levels

of security. The advantages that can be gained from smaller parameters include speed (faster

computations) and smaller keys and certificates. These advantages are especially important in

environments where processing power, strong space, bandwidth, or power consumption is con-

strained.

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve analogue of the

Digital Signature Algorithm. ECDSA was first proposed in 1992 by Scott Vanstone in response of

∗Department of Mathematics, Tunghai University, Taichung 407, TAIWAN

110

NIST (Nation Institute of Standards and Technology) request for public comments on their pro-

posal for Digital Signature Schemes. It was accepted in 1998as an ISO (International Standards

Organization) standard (ISO 14888-3), accepted in 1999 as an ANSI (American National Stan-

dards Institute) standard (ANSI X9.62), and accepted in 2000 as an IEEE (Institute of Electrical

and Electronics Engineers) standard (IEEE 1363-2000) and FIPS standards (FIPS 186-2). It is

also under consideration for inclusion in some other ISO standards. In this thesis, we propose a

variant of the ANSI X9.62 ECDSA.

We give a brief introduction of the digital signature algorithm in chapter 2, and then give the

basic concepts of the elliptic curve cryptosystems in chapter 3. The next chapter comes the elliptic

curve version of DSA and finally a variant of ECDSA will be given in chapter 5.

2 Digital Signature Algorithm

2.1 Discrete Logarithm Problems

Fix a primep. Let α andβ be two nonzero integers modp and suppose

β ≡ αx (mod p). (2.1)

The problem of findingx is called the discrete logarithm problem (DLP). It is easy tocompute

αx mod p, but solvingαx ≡ β for x is probably hard.

2.2 The Digital Signature Schemes

The conventional handwritten signature on a document is used to certify that the signer is

responsible for the content of the document. The signature is physically a part of the document

and while forgery is certainly possible, it is difficult to doso convincingly. Trying to mimic a

handwritten signature in a digital medium leads to a difficulty since cut and paste operations can

be used to create a perfect forgery. Thus, we need to have a wayof signing messages digitally

which is functionally equivalent to a physical signature, but which is at least as resistant to forgery

as its physical counterpart.

Schemes which provide this functionality are called Digital Signature Schemes. A Digital

Signature Scheme will have two components, a private signing algorithm which permits a user

to securely sign a message and a public verification algorithm which permits anyone to verify

that the signature is authentic. The signing algorithm needs to “bind” a signature to a message in

such a way that the signature can not be pulled out and used to sign another document, or have

the original message modified and the signature remain valid. For practical reasons it would be

necessary for both algorithms to be relatively fast and if small computers such as smart cards are

to be used, the algorithms can not be too computationally complex.

111

2.3 Hash Function

A hash functionH is a transformation that takes an inputm and returns a fixed-size string,

which is called the hash valueh (that is,h = H(m)). Hash functions with just this property have a

variety of general computational uses, but when employed incryptography, the hash functions are

usually chosen to have some additional properties.

The basic requirements for a cryptographic hash function are as follows.

• The input can be of any length.

• The output has a fixed length.

• H(m) is relatively easy to compute for any givenm.

• H(m) is one-way.

• H(m) is collision-free.

A hash functionH is said to beone-way if it is hard to invert, where “hard to invert” means that

given a hash valueh, it is computationally infeasible to find some inputm1 such thatH(m1) = h.

If, given a messagem1, it is computationally infeasible to find a messagem2 not equal tom1

such thatH(m1) = H(m2), thenH is said to be a weakly collision-free hash function.

A strongly collision-free hash functionH is one for which it is computationally infeasible to

find any two messagesm1 andm2 such thatH(m1) = H(m2)

The hash value represents concisely the longer message or document from which it was com-

puted; this value is called the message digest. One can thinkof a message digest as a “digital

fingerprint” of the larger document. Examples of well known hash functions are MD2 and MD5

and SHA .

2.4 The Digital Signature Algorithm (DSA)

The DSA was proposed in August 1991 by U.S. National Institute of Standards and Tech-

nology (NIST) and was specified in a U.S. Government Federal Information Processing Standard

(FIPS 186) called theDigital Signature Standard (DSS). The DSA can be viewed as a variant of

the ElGamal signature scheme. Its security is based on the intractability of the discrete logrithm

problem in prime-order subgroup of(Z/pZ)×.

• DSA DOMAIN PARAMETER GENERATION

Domain parameter are generated for each entity in a particular security domain.

1. Select a 160-bit primeq and a 1024-bit primep with the property thatq|p−1.

2. Select an elementh ∈ (Z/pZ)× and computeg = h(p−1)/q (mod p). (Repeat until

g 6= 1.)

3. Domain parameters arep,q andg.

112

• DSA KEY PAIR GENERATION

Each entity A in the domain with domain parameters(p,q,g) does the following:

1. Select a random or pseudo-random integerx such that 1≤ x ≤ q−1.

2. Computey = gx (mod p).

3. A’s public key isy; A’s private key isx.

• DSA SIGNATURE GENERATION

To sign a messagem, A does the following:

1. Select a random or pseudo-random integerk such that 1≤ k ≤ q−1.

2. ComputeX = gk (mod p) andr = X (mod q). If r = 0 then go to step 1.

3. Computek−1 (mod q).

4. ComputeH(m) = SHA-1(m).

5. Computes = k−1(H(m)+ xr) (mod q). If s = 0 then go to step 1.

6. A’s signature for the messagem is (r,s).

• DSA SIGNATURE VERIFICATION

To verify A’s signature(r,s) on m, B obtains authentic copies of A’s domain parameters

(p,q,g) and public keyy and does the following:

1. Verify thatr ands are integers in the interval[1,q−1].

2. ComputeH(m) = SHA-1(m).

3. Computew = s−1 (mod p).

4. Computeu1 = H(m)w (mod q) andu2 = rw (mod q).

5. ComputeX = gu1yu2 (mod p) andv = X (mod q).

6. Accept the signature if and only ifv = r.

• PROOF THAT SIGNATURE VERIFICATION WORKS

If a signature(r,s) on a messagem was indeed generated by A, thens = k−1(H(m)+ xr)

(mod q). Rearranging gives

gk = gs−1(H(m)+xr)

= gs−1H(m)+s−1rx

= gH(m)wyrw

= gu1yu2.

113

3 Elliptic Curves Cryptosystems

3.1 Elliptic Curves over Finite Field Fp = Z/pZ

Let p > 3 be an odd prime. An elliptic curveE overFp is defined by an equation of the form

y2 = x3 + ax + b, (3.1)

wherea,b ∈ Fp, and 4a3 + 27b2 6≡ 0 mod p. The setE(Fp) consists of all points(x,y), x ∈
Fp, y ∈ Fp that satisfy the defining equation(3.1), together with a special pointO called the point

at infinity.

Example: (Elliptic curve overF23) Let p = 23 and consider the elliptic curveE : y2 = x3 + x +4

defined overF23. Note that 4a3 +27b2 = 4+432= 436≡ 22 mod 23, soE is indeed an elliptic

curve. The points inE(F23) areO and the following:

(0,2), (0,21), (1,11), (1,12,) (4,7),

(4,16), (7,3), (7,20), (8,8), (8,15),

(9,11), (9,12), (10,5), (10,18), (11,9),

(11,14), (13,11), (13,12), (14,5), (14,18),

(15,6), (15,17), (17,9), (17,14), (18,9),

(18,14), (22,5), (22,19).

Addition formula: There is a rule, called thechord-and-tangent rule, for adding two points on

an elliptic curveE(Fp) to give a third elliptic curve point. Together with this addition operation,

the set of pointsE(Fp) forms a group withO serving as its identity. It is this group that is used in

the construction of elliptic curve cryptosystems.

The addition rule is best explained geometrically. LetP = (x1,y1) andQ = (x2,y2) be two

distinct points on an elliptic curveE. Then thesum of P andQ, denotedR = (x3,y3), is defined as

follows. First draw the line throughP andQ; this line intersects the elliptic curve in a third point.

ThenR is the reflection of this point in thex-axis. This is depicted in Figure 3.1. The elliptic curve

in the figure consists of two parts, the ellipse-like figure and the infinite curve.

If P = (x1,y1), then thedouble of P, denotedR = (x3,y3), is defined as follows. First draw

the tangent line to the elliptic curve atP. This line intersects the elliptic curve in a second point.

ThenR is the reflection of this point in thex-axis. This is depicted in Figure 3.2.

114

-

6

2 4-2-4

5

10

-5

-10

P
R

-R

Q

x
-

6

2 4-2-4

5

10

-5

-10

P
-R

R

y y

x

Figure 3.1:P+Q = R Figure 3.2:P+P = R

The following algebraic formulae for the sum of two points and the double of a point can be

derived from the geometric description.

1. LetP = (x1,y1) ∈ E(Fp).ThenP+O = O + P = P for all p ∈ E(Fp).

2. If P = (x1,y1) ∈ E(Fp), then(x1,y1)+ (x1,−y1) = O . (The point(x1,−y1) is denoted by

−P, and is called thenegative of P; observe that−P is indeed a point on the curve.)

3. (Addition Formula) LetP = (x1,y1), Q = (x2,y2) ∈ E(Fp).. ThenP+ Q = (x3,y3) and the

formula ofx3 andy4 are

x3 = m2− x1− x2

y3 = m(x1− x3)− y1.

where

m =























y2− y1

x2− x1
, if P 6= Q

3x2
1 + a
2y1

, if P = Q

Example: Let p = 23 and consider the elliptic curveE : y2 = x3 + x +4 defined overF23.

1. (Point addition) LetP = (4,7), Q = (13,11) ∈ E(F23).ThenP + Q = (x3,y3) is computed

as follows:

x3 = (
11−7
13−4

)2−4−13= −8≡ 23 (mod 23).

y3 = (
11−7
13−4

)(4−15)−7= −40≡ 6 (mod 23).

HenceP + Q = (15,6).

115

2. (Point doubling) LetP = (4,7). Then 2P = P+ P = (x4,y4) is computed as follows:

x4 = (
3(4)2 +1

14
)2−8 = 217≡ 10 (mod 23).

y4 = (
3(4)2 +1

14
)(4−10)−7= −97≡ 18 (mod 23).

Hence 2P = (10,18).

3.2 Elliptic Curve Cryptosystems

Several approaches to encryption (or decryption) using elliptic curves have been analyzed.

This paper describes one of them. The first task in this systemis to encode the plaintext message

m to be sent as anx-y point Pm. It is the pointPm that will be encrypted as a cipher text and

subsequently decrypted. Note that we cannot simply encode the message as thex or y coordinate

of a point, because not all such coordinates are inE(modp). There are approaches to encoding.

We developed a scheme that will be reported elsewhere. As with the key exchange system, an en-

cryption (or decryption) system requires a pointG and an elliptic groupE(modp) as parameters.

Each user A selects a private keyαA and generates a public key

PA = αAG.

To encrypt and send a messagePm to B, A chooses a random positive integerx and produces the

cipher textCm consisting to the pair of points

Cm = {xG,Pm + xPB}.

Note that A has used B’s public keyPB. To decrypt the cipher text, B multiplies the first point in

the pair by B’s secret key and subtracts the result from the second point:

Pm + xPB−nB(xG) = Pm + x(nBG)−nB(xG) = Pm.

A has masked the messagePm by addingxPB to it.

Nobody but A knows the value ofx, so even thoughPB is a public key, nobody can remove the

maskxPB. However, A also includes a “clue,” which is enough to removethe mask if one knows

the private keynB. For an attacker to recover the message, the attacker would have to computex

givenG andxG, which is hard.

4 Elliptic Curve DSA (ECDSA)

4.1 Elliptic Curve DLP (ECDLP)

The elliptic curve discrete logarithm problem is the cornerstone of much of present-day elliptic

curve cryptography. It relies on the natural group law on a non-singular elliptic curve which allows

116

one to add points on the curve together. Given an elliptic curve E over a finite fieldF, a point on

that curve,P, and another point you know to be an integer multiple of that point Q, the “problem”

is to find the integern such thatnP = Q.

The problem is computationally difficult unless the curve has a “bad” number of points over

the given field, where the term “bad” encompasses various collections of numbers of points which

make the elliptic curve discrete logarithm problem breakable. For example, if the number of points

on E overF is the same as the number of elements ofF, then the curve is vulnerable to attack. It

is because of these issues that point-counting on elliptic curves is such a hot topic in elliptic curve

cryptography.

Example: In the elliptic curve group defined byy2 = x3 +9x +17 overF23, What is the discrete

logarithmk of Q = (4,5) to the baseP = (16,5)?

Ans: One way to findk is to compute multiples ofP until Q is found. The first few multiples

of P are:
P = (16,5), 2P = (20,20), 3P = (14,14),

4P = (19,20), 5P = (13,10), 6P = (7,3),

7P = (8,7), 8P = (12,17), 9P = (4,5).

Since 9P = (4,5) = Q, the discrete logarithm ofQ to the baseP is k = 9.

4.2 Elliptic Curve DSA (ECDSA)

This section describes the procedures for generating and verifying signatures using the

ECDSA.

• DOMAIN PARAMETER GENERATION

The domain parameter for ECDSA consist of a suitably chosen elliptic cureE defined over

a finite fieldFp of characteristicp, and a base pointG ∈ Ep(a,b) with ordern.

1. Select a random or pseudo-random integerx such that 1≤ x ≤ n−1.

2. ComputeQ = xG.

3. A’s public key isQ; A’s private key isx.

• ECDSA SIGNATURE GENERATION

To sign a messagem, an entity A with domain parameters(p,Ep(a,b),G,n) and associated

key pair(x,Q) does the following:

1. Select an integerk such that 1≤ k ≤ n−1.

2. ComputekQ = (x1,y1).

3. Computer = x1 (mod n). If r = 0 then go to step 1.

4. Computek−1 (mod n).

5. Compute SHA-1(m) and convert this string to an integerH(m).

117

6. Computes = k−1(H(m)+ xr) (mod n). If s = 0, then go to step 1.

7. A’s signature for the messagem is (r,s).

• ECDSA SIGNATURE VERIFICATION

To verify A’s signature(r,s) on m, B obtains an authentic copy of A’s domain parameter

(p,Ep(a,b),G,n) and associated public keyQ. B then does the following:

1. Verify thatr ands are integers in the interval[1,n−1].

2. Compute SHA-1(m) and convert this string to an integerH(m).

3. Computew = s−1 (mod n).

4. Computeu1 = H(m)w (mod n) andu2 = rw (mod n).

5. ComputeX = (x2,y2) = u1G+ u2Q.

6. If X = O , then reject the signature. Otherwise, computev = x2 (mod n).

7. Accept the signature if and only ifv = r.

• PROOF THAT SIGNATURE VERIFICATION WORKS

If a signature(r,s) on a messagem was indeed generated by A, thens = k−1(H(m)+ xr)

(mod n). Rearranging gives

kG = s−1(H(m)+ xr)G (mod n)

= s−1H(m)G+ s−1rxG (mod n)

= H(m)wG+ rwQ (mod n)

= u1G+ u2Q (mod n).

Thusu1G+ u2Q = (u1 + u2d)G = kG, and sov = r as required.

• RATIONALE FOR CHECKS ONr AND s IN SIGNATURE VERIFICATION.

Step q of signature verification checks thatr ands are integers in the interval[1,n−1]. These

checks can be performed very efficiently, and are prudent measures in light of known attacks

on related ElGamal signature schemes which do not perform these checks. The following is

a plausible attack on ECDSA if the checkr 6= 0 (and, more generally,r 6≡ 0 modn) is not

performed. Suppose that A is using the elliptic curvey2 = x3 + ax + b overFp, whereb is

a quadratic residue modulop, and suppose that A uses select a base pointG = (0,
√

b) of

prime ordern. (It is plausible that all entities may select a base point with x-coordinate in

order to minimize the size of domain parameters.) An adversary can now forge A’s signature

on any messagem of its choice by computingH(m) =SHA-1(m). It can easily be checked

that(r = 0,s = H(m)) is a valid signature form.

118

Comparing DSA and ECDSA. Conceptually, the ECDSA is simply obtain from the DSA

by replacing the subgroup of orderq of (Z/pZ)× generated byg with the subgroup of

points on an elliptic curve that are generated byG. The only significant difference between

ECDSA and DSA is in the generation ofr. The DSA does this by taking the random element

X = gk mod p and reducing it moduloq, thus obtaining an integer in the interval[1,q−1].

The ECDSA generatesr in the interval[1,n−1] by taking thex-coordinate of the random

pointkG and reducing it modulon.

4.3 DSA VS. ECDSA
DSA ECDSA

Key

generation

Selectp, q, x, q|p−1,

and 1≤ x < q.

Selecth ∈ [1, p−1], compute

g = h(p−1)/q (mod p)

y = gx (mod p)

public key :(p, q, g, y)

private key :x

SelectEp(a,b), x,

and 1≤ x < n.

SelectG ∈ Ep(a,b) with ordern

and compute

Q = dG

public key :(Ep(a,b), p,G,n,Q)

private key :x

Signature

generation

Selectk, 1≤ k < n.

r = (gk mod p) (mod q)

s = k−1(H(m)+ xr) (mod q)

(r,s) is the signature ofm.

Selectk, 1≤ k < q.

kG = (x1,y1), r = x1 (mod n)

s = k−1(H(m)+ xr) (mod n)

(r,s) is the signature ofm.

Signature

verification

w = s−1 (mod q)

u1 = H(m)w (mod q)

u2 = rw (mod q)

v = (gu1yu2 mod p) (mod q)

v = r ⇒ accept the signature.

w = s−1 (mod n)

u1 = H(m)w (mod n)

u2 = rw (mod n)

u1G+ u2Q = (x2,y2),

v = x2 (mod n)

v = r ⇒ accept the signature.
4.4 An Example of ECDSA

Example: Let p = 114973; the elliptic curveE : y2 = x3 − 3x + 69424 and a base pointG =

(11570,42257) with ordern = 114467; selectx = 86109 thenQ = xG = (6345,28549); and the

messagem = “worldof” it’s hash valueH(m) = 1789679805, the signature for the messagem is

(r,s) as following:

• ECDSA SIGNATURE as following:

1. Selectk = 84430 such that 1≤ k ≤ n−1.

2. ComputekG = (11705,10585),r = 31167 (mod 114973).

3. Computes = k−1(H(m)+ xr) = 82722 (mod 114973).

119

• ECDSA VERIFICATION as following:

1. Computew = s−1 = 83035 (mod 114973).

2. Compute

u1 = H(m)w = 71001 (mod 114973)

u2 = rw = 81909 (mod 114973)

3. Compute

u1G = (66931,53304)

u2Q = (88970,41780),

u1G+ u2Q = (31167,31627) andv = 31167 (mod 114973).

4.

v = 31167 (mod 114973)

r = 31167 (mod 114973).

We obtainv = r, that is accept the signature.

5 A variation of ECDSA

5.1 Algorithm

A variant of ECDSA.

• ECDSA DOMAIN PARAMETER GENERATION

The domain parameter for ECDSA consist of a suitably chosen elliptic cureE defined over

a finite fieldFp of characteristicp, and a base pointG ∈ Ep(a,b) with ordern.

1. Select a random or pseudo-random integerx such that 1≤ x ≤ n−1.

2. ComputeQ = xG.

3. A’s public key isQ; A’s private key isx.

• ECDSA SIGNATURE GENERATION

To sign a messagem, an entity A with domain parameters(p,Ep(a,b),G,n) and associated

key pair(x,Q) does the following:

1. Select two integersk1,k1 such that 1≤ k1, k1 ≤ n−1.

120

2. Computek1G = (x1,y1) andk2G = (x2,y2).

3. Computer1 = x1 (mod n) andr1 = x2 (mod n). If r1 = 0 andr1 = 0 then go to step

1.

4. Computek−1
1 (mod n).

5. Compute SHA-1(m) and convert this string to an integerH(m).

6. Computes = k−1
1 (H(m)k1 + x(r1 + r1)) (mod n). If s = 0, then go to step 1.

7. A’s signature for the messagem is (r1, s).

• ECDSA SIGNATURE VERIFICATION

To verify A’s signature(r1,s) on m, B obtains an authentic copy of A’s domain parameter

(p,Ep(a,b),G,n) and associated public keyQ. B then does the following:

1. Verify thatr1 andr2 are integers in the interval[1,n−1].

2. Compute SHA-1(m) and convert this string to an integerH(m).

3. Computew = s−1 (mod n).

4. Computeu1 = H(m)wk2 (mod n) andu2 = (r1 + r2)w (mod n).

5. ComputeX = (x3,y3) = u1G+ u2Q.

6. If X = O , then reject the signature. Otherwise, computev = x3 (mod n).

7. Accept the signature if and only ifv = r1.

• PROOF THAT SIGNATURE VERIFICATION WORKS

If a signature(r1,s) on a messagem was indeed generated by A, thens = k−1
1 (H(m)k2 +

x(r1 + r2)) (mod n). Rearranging gives

k1G = s−1(H(m)k2 + x(r1 + r2))G (mod n)

= s−1H(m)k2G+ s−1(r1 + r2)xG (mod n)

= H(m)wk2G+(r1+ r2)wQ (mod n)

= u1G+ u2Q (mod n).

Thusu1G+ u2Q = (u1 + u2d)G = k1G, and sov = r1 as required.

121

5.2 EDCSA VS. variation ECDSA
ECDSA variant ECDSA

Key

generation

SelectEp(a,b), x,

and 1≤ x < n.

SelectG ∈ Ep(a,b) with ordern

and compute

Q = dG

public key :(Ep(a,b), p,G,n,Q)

private key :x

SelectEp(a,b), x,

and 1≤ x < n.

SelectG ∈ Ep(a,b) with ordern

and compute

Q = dG

public key :(Ep(a,b), p,G,n,Q)

private key :x

Signature

generation

Selectk, 1≤ k < n.

kG = (x1,y1), r = x1(modn)

s = k−1(H(m)+ xr)(modn)

(r,s) is the signature ofm.

Selectk1, k2, 1≤ k1, k2 < n.

k1G = (x1,y1), r1 = x1(modn)

k2G = (x2,y2), r2 = x2(modn)

s = k−1
1 (H(m)k2 + x(r1 + r2))(modn)

(r1,s) is the signature ofm.

Signature

verification

w = s−1(modn)

u1 = H(m)w(modn)

u2 = rw(modn)

u1G+ u2Q = (x2,y2),

v = x2(modn)

v = r ⇒ accept the signature.

w = s−1(modn)

u1 = H(m)wk2(modn)

u2 = (r1 + r2)w(modn)

u1G+ u2Q = (x3,y3),

v = x3(modn)

v = r1 ⇒ accept the signature.

5.3 Examples

Example: Let p = 114973; the elliptic curveE : y2 = x3 − 3x + 69424 and a base pointG =

(11570,42257) with ordern = 114467; selectx = 86109 thenQ = xG = (6345,28549); and the

messagem = “worldof” the hash value isH(m) = 1789679805, the signature for the messagem

is (r1, s) as following:

• ECDSA SIGNATURE as following:

1. Selectk1 = 32685,k2 = 43508 such that 1≤ k1, k2 ≤ n−1.

2. Compute

k1G = (11705,10585), r1 = 11705 (mod 114973)

k2G = (4060,59439), r2 = 4060 (mod 114973).

3. Computes = k−1
1 (H(m)k2 + x(r1 + r2)) = 31509 (mod 114973).

• ECDSA SIGNATURE as following:

1. Computew = s−1 = 71694 (mod 114973).

122

2. Compute

u1 = H(m)k2w = 57445 (mod 114973)

u2 = (r1 + r2)w = 8752 (mod 114973).

3. Compute

u1G = (83855,23496)

u2Q = (37512,96852),

u1G+ u2Q = (11705,10585) andv = 11705 (mod 114973).

4.

v = 11705 (mod 114973)

r1 = 11705 (mod 114973).

We obtainv = r1, that is accept the signature.

Example: Let p = 150197; the elliptic curveE : y2 = x3 − 3x + 45624 and a base pointG =

(48640,94626) with ordern = 150033; selectx = 52414 thenQ = xG = (15837,75466); and the

messagem = “ecdsanew from monkey” the hash value isH(m) = 596493798, the signature for

the messagem is (r1, s) as following:

• ECDSA SIGNATURE as following:

1. Selectk1 = 18506,k2 = 56012 such that 1≤ k1, k1 ≤ n−1.

2. Compute

k1G = (78866,50297), r1 = 78866 (mod 150197)

k2G = (53820,3610), r2 = 53820 (mod 150197).

3. Computes = k−1
1 (H(m)k2 + x(r1 + r2)) = 105358(mod 150197).

• ECDSA VERIFICATION as following:

1. Computew = s−1 = 13843 (mod 150197).

2. Compute

u1 = H(m)k2w = 50883 (mod 150197)

u2 = (r1 + r2)w = 68312 (mod 150197).

123

3. Compute

u1G = (77938,110891)

u2Q = (18615,114143),

u1G+ u2Q = (78866,50297) andv = 78866 (mod 150197).

4.

v = 78866 (mod 150197)

r1 = 78866 (mod 150197).

We obtainv = r1, that is accept the signature.

5.4 Security Analysis

The reason why our scheme is better than original one is following:

1. In the original ECDSA. The secretsk use to sign two or more messages should generated

independently of each other. In particular, a different secret k should signed; otherwise, the

private keyx can be recovered. Note that if a secure random or pseudo-random number

generator is used, then the chance of generating a repeatedk value is negligible. To see how

private keys can be recovered if secrets are repeated, suppose that the same secretk was

used to generate ECDSA signatures(r,s1) and(r,s2) on two different messagesm1 andm2.

Then

s1 = k−1(H(m1)+ xr) (mod n)

s2 = k−1(H(m2)+ xr) (mod n),

whereH(m1) = SHA-1(m1) andH(m2) = SHA-1(m2). Then

ks1 = H(m1)+ xr (mod n)

ks2 = H(m2)+ xr (mod n).

Subtraction givesk(s1− s2) = H(m1)−H(m2) (mod n). If s1 66= s2 (mod n), which occurs

with overwhelming probability, thenk = (s1− s2)
−1(H(m1)−H(m2)) (mod n). Thus, an

adversary can determinek, and then use this to recoverx.

2. On our scheme, if we use the same secretk1, k2 was used to generate ECDSA signatures

(r1,s1) and(r1,s2) on two different messagesm1 andm2. Then

s1 = k−1
1 (H(m1)k2 + x(r1 + r2)) (mod n)

s2 = k−1
1 (H(m2)k2 + x(r1 + r2)) (mod n),

124

whereH(m1) = SHA-1(m1) andH(m2) = SHA-1(m2). Then

k1s1 = H(m1)k2 + x(r1 + r2) (mod n)

k1s2 = H(m2)k2 + x(r1 + r2) (mod n).

Subtraction givesk1(s1−s2) = (H(m1)−H(m2))k2 (mod n). Even ifs1 6= s2 (mod n), we obtain

the relation equation ofk1(s1−s2) = (H(m1)−H(m2))k2. We can not determinek by this equation

and then use this to recoverx. Hence, our scheme is more security.

References

[1] D. Johnson and A. Menezes (August 1999)” “The Elliptic Curve Digital Signature Algo-

rithm(ECDSA),” Techical Report CORR 99-34, Centre for Applied Cryptograpic Research

(CACR), University of Waterloo.

[2] S. Goldwasser, S. Micali and R. Rivest (1997), “A digitalsignature scheme against adaptive

choosen message attracks,”SIAM Journal on Computing, 17 , 281-308.

[3] S. Blake-Wilson and A. Menezes (1984), “Entity authentication and authenticated key trans-

port ptotocols employing asymmetric techiques,”Proceedings of the 5th International Work-

shop on Security Protocols, Lecture Notes in Computing Science 1361, 137-158.

[4] National Institute of Standards and Technology,Digital Signature Standard, FIPS Publica-

tion 186, 1994.

[5] National Institute of Standards and Technology (1997),Entity Authentication using Public

Key Cryptofraphy, FIPS Publication196.

[6] M. Rabin (1979), “Digitalized signatures and public-key functions as intractable as factor-

ization,” MIT/LCS/TR-212, MIT Laboratory for Computer Science.

[7] R. Rivest, A. Shamir and L. Adleman (1978), “A method for obtaining digital signatures and

public-key cryptosystems,”Communications of the ACM 21, 120-126.

[8] C. Schnorr (1991), “Efficient signature generation by smart cards,”Journal of Cryptology,

43, 161-174.

[9] NIST (2003), “Recommendation on Key Management,”DRAFT Special Publication 800-57,

http://csrc.nist.gov/CryptoToolkit/kms/guideline-1-Jan03.pdf, .

125

[10] NIST (2001), “Digital Signature Standard,”FIPS 186-2, http://csrc.nist.gov/

publiscations/fips/fips186-2/fips186-2-change1.pdf,

[11] NIST (2002), “Secure Hash Standard,”FIPS PUB 180-2, http://csrc.nist.gov/

publiscations/fips/fips180-2/fips180-2withchangenotice.pdf,

[12] NIST (2005), “NIST Brief Comments on Recent Cryptanalytic Attracks on SHA-1,”

http://csrc.nist.gov/hashstandardscomments.pdf, .

[13] D. Galindo, S. Martin and J.L. Villar (2004), “Evaluating elliptic curve based KEMs in the

light of pairings,” http://eprint.iacr.org/2004/084.pdf.

[14] 張草薰 (2000), “ElGamal數位簽署的推廣與改良,” 東海大學數學研究所碩士論文.

126

On the Elliptic Curve Digital Signature Algorithm

廖宏梓 沈淵源

摘 要

本篇論文主要目的在探討橢圓曲線版的數位簽署。第二章我們介紹數位簽署的密碼系統且在第三章

簡介橢圓曲線密碼系統的基本概念。緊接著介紹橢圓曲線版的數位簽署(ECDSA)以及我們所提出的一個

改良的版本。

