
Tunghai Science Vol. 2: 1−19 1

July, 2000

Automatic Testing for Link Correctness on the
Internet

Wen-Kui Chang * Shing-Kai Hon *

Abstract

The user-friendly convenience of the WWW promotes its rapid application delivery, but the technical

complexities of a website and variances in the browser make web testing and quality control much more

difficult. This paper proposes an automatic framework for testing hyperlink correctness in the Internet

environment. We first investigate the underlying features of Internet applications and then discuss quality

issues and a performance index. We study how to employ the technique of statistical usage testing in such a

domain and develop an integrated validating mechanism for web-based applications. All possible

navigation paths are first formulated to represent a scenario model with the Markov chain property, which

is then used to statistically generate a navigation-script file. After tracing these navigation scripts, we may

then perform numerical computations of link validation based on Markov chain theory. It is noted that the

proposed automatic mechanism is not only systematically effective on certifying hyperlinks, but also highly

efficient for designing a test process.

Keywords: Internet, software performance testing, statistical usage testing, Markov chain, object-oriented

approach

1. Introduction

As Internet applications have grown explosively in the last few years, more and more web

sites employ a variety of new technologies including Common Gateway Interface (CGI), Java,

Java script, Visual Basic (VB) script, Active Server Processor (ASP), etc. As a result, it is

severely complex and even impossible to analyze the quality of web applications since there are

so many factors such as networking architecture, communication speed, machine configurations,

traffic load, etc., which is highly correlated with performance of a website.

2

In most web applications, it is unlikely that the application developers can enumerably

validate all possible navigation paths. This paper proposes an automatic framework of

quantitative certification of link validity to ensure that all linked paths provide consistent and

reasonable information streams and appropriate contexts.

In this research, the rationale for statistical usage testing is investigated and the feasibility

of its application in certifying hyperlinks of a website is studied. In principle, a navigation

model is first established to characterize various browsing paths of a web site. Hence, if a

browsing sample is drawn statistically as a test script from the navigation model, performance

on this script sample may then be used as a basis for the evaluation of web quality.

With the illustration of a practical demonstration, it is shown that the proposed automatic

framework is not only systematic in certifying effectively hyperlinks, but also highly efficient for

complex web sites on the Internet. In contrast to the other methods of testing, the recommended

approach has benefits including greatly reducing testing effort, providing quantitative testing

coverage, etc.

In addition, since the combination of web site complexity and low quality is potentially

fatal to company business, more research efforts must be devoted to performance of e-business

applications. Hereafter, validating on e-business web site is the future direction of our research

2. Features of the Internet testing environment

2.1 Internet server architecture

As shown in Fig. 1, the server in a client/server architecture provides services to its client

subsystems, which are responsible for receiving inputs from the user, validating query syntax,

and initiating the required transactions. The server is then responsible for performing the

transaction and guaranteeing the integrity of the results. Nowadays the request for a service is

usually done via a remote procedure call mechanism or a common object broker, such as

CORBA or Java RMI. Control flows in the clients and the servers are independent except for

* Department of Computer & Information Sciences, Tunghai University, Taichung 407, TAIWAN

3

synchronization to manage requests or to receive results.

Currently two approaches are frequently employed to resolve the parallelism dilemma in

web server architecture. Specifically, one uses the traditional HTTP-based server and further

enhances it by the parallel feature, and the other makes use of the object-oriented paradigm and

implements it through the concept of distributed objects.

Fig. 1 depicts the traditional distributed Internet server. It consists of one or more front-end

machines running HTTP daemons and one or more server machines running the distributed

system. Naturally, a fast network facility connects the server machines. Alternatively, Fig. 2

illustrates a possible object oriented distributed Internet server. In this case, client objects

connect to server objects by means of some underlying object framework like CORBA.

Meanwhile, for performance reasons, multiple instances of the same server object may exist;

and the runtime environment takes care of balancing incoming requests over the instances.

Figure 1. The client/server architecture in the UML class diagram

Figure 2. The distributed Internet server architecture in the UML class diagram

2.2 Hyperlink issues in Internet applications

4

Although the immediacy of the WWW creates immediate expectations of quality and rapid

application delivery, the technical complexities of a website and variances in the browser make

web testing and quality control much more difficult. Besides, more new technology such as Java

script, ASP, ActiveX and CGI-bin scripts, etc., imply that it is more complicated to manage the

quality of web sites. Consequently, website testing is still at the embryonic stage [1]. For

instance, in e-commerce applications we are either building data up or retrieving data from a

database. How do we know the retrieved data from a database is correct? If we input correctly,

does the result satisfy what we expect?

In recent years, many studies have investigated the issue of quality analysis of web

applications. In particular, reliability in web sites has attracted much more attention than before.

Certain reliability indices are discussed in software quality assessment [2]. With more and more

web sites, the emerging generation of critical Internet and web technologies is likely to require

very high levels of reliability, and to explore its application for distributed computing

technologies in the web environment.

2.3 Survey of current research

Theoretically, Yang and et al. [3] proposed an object-oriented architecture to construct web

application testing environments by extending the well evaluated, traditional software testing

architecture and applying some design patterns. The architecture contains six subsystems, and

testing processes such as test case generation can be achieved with the cooperation of these

subsystems. However, the prototype web-testing environment is still in its research stage,

without a very high feasibility.

Also, there are not many web-testing tools to be found. Here, we present two popular

web-testing tools. The first one is Astra, which is produced by Mercury Interactive Inc. and

consists of three parts: LoadTest, QuickTest and SiteManager [4]. LoadTest is used to test

scalability and performance of web applications, while SiteManager is a visual website

management tool that automatically schedules and performs scans of an entire website and

creates complete visual maps of the site. Finally QuickTest is designed to test websites by

organizing interactive customizable tests. To employ Astra for web testing, a tester first clicks

the hyperlinks or components of interest via a browser, and then QuickTest records those

browsing paths automatically, which accordingly constitute the desired test cases to be executed.

5

Another testing tool is e-TESTER, developed by RSW Software, Inc [5]. With the aid of

visual technology, a tester creates his visual script by simply interacting with the application in

a browser. Afterward, e-TESTER automatically generates the actual navigation map of the

tester’s web application, which is then considered as a comprehensive test baseline for the

entire application in order to validate the links, objects, images and text on the web pages.

In summary, since web applications have so many dependencies on other parts of the

system, such as hyperlinks, databases, and network load, web-site testing becomes more

complicated and difficult. In the following, we investigate the application of statistical usage

testing to such a domain.

3. Background of software quality evaluation

3.1 Statistical usage testing

Recently statistical usage testing [6,7,8,9] has been justified and widely applied to software

quality evaluation. Conceptually, the rationale of statistical usage testing lies in the fact that the

failures which occur most frequently in practical use will be found early during the test cycle.

In essence, the main benefit of statistical usage testing is that it makes use of statistical

inference techniques to compute probabilistic properties of the testing process, such as reliability,

or mean time to failure (MTTF) for software quality evaluation.

3.2 Markovian usage model

Before performing statistical usage testing, a usage model must first be developed to

represent all possible events in system use and their probabilities of occurrence. Essentially, a

usage model briefly consists of possible stimuli, possible sequencing of stimuli, and expected

responses. Interfaces and requirements are usually simplified or clarified when the model is

reviewed systematically in the context of operational use. Actually, it works as an external view

of the system specification that is readily understandable by system engineers, developers,

clients, and end users.

Furthermore, we assume that an operational use is a skeleton for the intended use of the

software in an intended environment. Thus, all possible operational uses of a software system

6

will constitute a population with a huge size. If a usage sample of test scenarios is drawn

statistically from the usage population, performance on this sample may then be used as a basis

for the evaluation of software quality. In addition, quantitative criteria about completion of the

testing process may be obtained based on analyzing the usage model.

Whittaker suggests [10] that software testing is rather suitable to be treated as a stochastic

process and, its usage can be modeled by a finite state, discrete parameter, time homogeneous,

irreducible Markov chain.

In this paper, the Markov approach will be employed for scenario modeling [11]. Under the

Internet environment, all possible navigation paths are first formulated to represent a scenarios

model with the Markov chain property that is then analyzed and used to generate a test script

file automatically.

3.3 Software reliability certification

In general, the two most common methods of system reliability evaluation are the

combination modeling and Markov-state modeling approaches [12]. Combinational reliability

models allow the reliability of a system to be calculated from the reliability of its component

parts. Most techniques for the prediction of software reliability are based on an assessment of

the techniques used to develop and test the software [13,14]. However, the combination

modeling approach is frequently restricted to the analysis of random component failures.

Alternatively, the Markov modeling technique represents various operation states that

appear in the history of software execution as either the discrete or the continuous Markov

model [2], and analytic results derived from generic Markov chain theory are ready to analyze

and certify software reliability indices.

Correspondingly, software reliability may be computed as the probability that an arbitrarily

selected sequence of operations of the software will not cause a failure. Technically, it is the

probability that an executing path beginning with the initial state and ending with the first

occurrence of the terminating state will not contain a failure state [6]. In this paper, we employ

the philosophy of the Markov modeling approach.

4. Automatic process of evaluation of link validity

7

4.1 Framework of automatic testing

For our system framework of automatic testing, we divide the complete function into five

subsystems, which are represented by using the UML (Universal Modeling Language) class

diagram as in Fig. 3.

In Fig.3, there is only one actor, i.e. tester, who negotiates the details of user requirements

and specifications with the client. The responsibility of the tester is to ensure that the purpose of

system requirements of a client has been both clearly described and completely satisfied. Thus,

he must first build a scenario model by manually eliciting user requirements and specifications.

Then, other testing procedures are followed in sequence. In our framework, they are designed

and implemented as four subsystems that can execute automatically. These subsystems consist of

navigation structure builder, navigation script generator, navigation script executor and

evaluator, which are discussed briefly in the following.

Figure 3. The framework of automatic testing in the UML (class diagram)

4.2 Evaluation process

4.2.1 Requirement elicitation

In general, requirement elicitation is an iterative process of communication among a tester,

clients, and users for defining a new system. From the user’s viewpoint, we depict user

8

requirements by definitely describing a system and its interaction with the surrounding

environment such as the clients, their work process, and other systems, etc.

First, the client and tester identify a problem area and define a new system that addresses

the problems encountered. Tester clarifies the system requirements and specifications with the

client. Then user specifications behave as an agreement between the client and tester, and are

continuously validated by the client and tester.

4.2.2 Navigation structure building

To begin statistical usage testing, a navigation structure must first be built to display all

possible navigation paths for a web site. However, it is somewhat difficult to collect all complete

browsing paths as the potential paths may diverge without termination. In this research, we

design a module Navigation viewer to build the hierarchical navigation structure level by level,

by scanning the source code of each homepage to catch all URL’s (Universal Resource Locator)

of emergent hyperlinks from the root page.

4.2.3 Navigation scripts generation

Once the navigation structure is established, a browsing sample may then be drawn

statistically to construct test scripts. That is, take a randomly selected path beginning from the

initial state and ending with the terminating state.

Without loss of generality, the format of these generated test scripts with N nodes is

assumed to be as shown in Table 1. Specifically, node A is the initial state, which is usually the

homepage of the tested website. Node B is associated with node A (i.e., the homepage) and node

C is further associated with node B, and so on. The last step--nth step--means that this test script

has reached the terminating node in the usage model. Naturally any test script may not

transverse all nodes inside the usage model. Thus, the larger the number of test scripts

generated and executed, the higher the test coverage of states or arcs of the model swept after

their execution.

In this paper, test scripts are generated automatically by using the package ToolCertify

[15].

9

Table 1. The format of navigation scripts

Navigation script: serial number
Test step Description

1
Software Not Invoked
1. click to node A
node A

2
2. click to node B
node B

3
3. click to node C
node C

‧ ‧

n
n. click to Software Terminated
Software Terminated

4.2.4 Navigation Script execution

Implicitly, a generated test script constitutes one arbitrary usage path that consists of

several browsing links starting from the initial state (i.e., homepage) of a website to its

termination state (i.e., exit node). To execute one test script, each intermediate test step listed in

Table 1 must be visited and checked to see if its function worked as intended for each test script.

In this research, a subsystem Script executor is designed, by using the JAVA language, to

automatically execute these generated navigation scripts as illustrated in Fig. 4.

Figure 4. The Script executor executes navigation script automatically

4.2.5 Evaluation

10

After performing the test scripts execution, failure information like inter-failure data may

be collected to evaluate the hyperlink validity of the web application in the following respects:

1. Failure analysis

From our observations, most failure information on hyperlink validity may be classified as:

“HTTP 404 Not Found,” “HTTP Server at Compressed .com:8080 Replies: HTTP/1.0 500 Error

from Proxy,” “HTTP 403 Forbidden/Access Denied, ” “Site Unavailable”, etc.

Normally the message “HTTP 404 Not Found” occurs when the browser cannot find the

document that has been requested on the host computer. In other words, this failure occurs

either because the request that is initiated by a client cannot be executed in the server, or

because the required file is absent in that server.

On the other hand, as to the error message “Site Unavailable,” the most common reason

we found is that there are too many people trying to visit that same website so that web

communication is congested. In addition, the site could also be down for maintenance, or there

is a network problem, or that site no longer exists. Meanwhile, browsing an incorrect web

address could also cause such a message.

2. Evaluation result

As stated previously, since both the navigation structure and the generated test scenarios

may be represented by a Markov chain, analytic results derived from generic Markov chain

theory are ready to analyze and certify software reliability index.

As presented in Section 3, moreover, software reliability is computed as the probability that

an executing path beginning from the initial state and ending with the first occurrence of the

terminating state will not contain a failure state. However, under the web environment, software

reliability is interpreted as the probability that a navigation path beginning from the homepage

to the browsing end will not encounter a failure link.

In this research, reliability analysis is performed by the package ToolCertify with

additional coverage information.

5. Applying the proposed method to an Internet example

11

5.1 General description

The web site ArchSymb [16], as shown in Fig. 5, is chosen to illustrate how to apply the

proposed method. Since the ArchSymb web site uses many structural links, its navigation

structure is hierarchical [17], which can also be observed from Fig. 6. The hierarchical structure

possesses the advantage that it may retain the original structure of information contained in a

hypermedia system. In addition, it may assist users in looking up quickly the desired nodes

through browsing the structured navigation paths.

Figure 5. ArchSymb example homepage

5.2 Scenarios Model

As pointed out previously in this research, we make use of the subsystem Navigation

Viewer to establish each level of the navigation map by assuming the root (homepage) is level 1,

as shown in Fig. 6. The whole tree structure of ArchSymb contains five levels, and level two

consists of 13 nodes. Consider every hypermedia link as a browsing state and the homepage as

the starting state. While browsing ArchSymb, the user clicks every possible link from the

starting node until he stops. Consequently, these possible operational patterns form a Markov

chain.

On the other hand, although its navigation map is hierarchical, some links of ArchSymb

12

have no termination at all because they expand endlessly. To avoid cognitive overload and

spaghetti links, we view some hypermedia links as termination nodes at some level if this is

adequate. For instance, square nodes in Fig. 7 imply these nodes that are truly terminated, while

triangle nodes indicate that they actually have more emergent links, but are considered as

termination nodes for simplicity.

Figure 6. A navigation view of the ArchSymb example

Figure 7. The scenarios model of the ArchSymb example

Homepage

13

5.3 Model analysis

The usage model built for the ArchSymb web site includes 61 nodes in all, which has the

fundamental impact of link evaluation on web applications. With the aid of the ToolCertify

evaluation tool [15], we summarize the analyzed result as in Table 2.

In Table 2, the second row “Number of active hyperlinks” represents the numeric count of

arcs in the navigation structure model, while the third row “Expected script length” indicates

the expected number of hyperlinks in a typical test script. In other words, it provides the average

script length among a large number of random scripts from the model. On the other hand, the

fourth row “Least likely node-coverage expected at” shows the expected number of test scripts

required to cover the minimal set of nodes. And the final row “Least likely hyperlink-coverage

expected at” shows the expected number of test scripts required to cover the minimal set of

hyperlinks.

Table 2. Analysis report of the ArchSymb navigation structure

Number of existing nodes 61
Number of active hyperlinks 114
Expected script length 5.5722
Least likely node-coverage expected at 89.9999
Least likely hyperlink-coverage expected at 132.0001

5.4 Evaluation analysis

1. Navigation Scripts

Based on Table 2, the minimal number of test scripts to test the web site of interest is

initially estimated as 133 (132.0001). In practical testing, however, complete coverage of the

browsing links was not reached until 335 non-failure executions of test scripts, as shown in

Table 4. Unfortunately, after executing these 335 generated test scripts, 10 link errors were

found. Thus, complete coverage of actual links was accomplished with 503 test scripts, as

illustrated in the same table.

2. Failure analysis

In summary, the failure report of the 10 link errors is analyzed as in Table 3. Because only

one failure was found, the values of probability of occurrence are all the same. In addition, the

“Mean first passage” column, in terms of Markov chain theory, denotes the expected number of

14

hyperlinks for the first occurrence of a certain node from the homepage.

On observing the 10 distinct failure paths among the 503 testing browsing paths, one

source of link errors was identified. In more detail, it is noted from the failure report that all 10

failures links were emerging from the node Contact us followed by the node Support. That is,

any path emergent from the node Support will fail in this example. In fact, if we click this node

directly, we see the error message like “HTTP 404 Not Found” on a browser.

Table 3. Failure analysis of the ArchSymb example

Failure ID
Mean first
passage

Probability of
occurrence

1 2796.999512 0.001988
2 2796.999512 0.001988
3 2796.999512 0.001988
4 2796.999512 0.001988
5 2796.999512 0.001988
6 2796.999512 0.001988
7 2796.999512 0.001988
8 2796.999512 0.001988
9 2796.999512 0.001988

10 2796.999268 0.001988

3. Evolution result

By the analysis result derived from the Markov usage model, partial certification results

may be summarized as in Table 4, with 95% and 99% confidence intervals (MTTF denotes the

Mean Time To Failure and R denotes the system reliability). Table 4 also illustrates how, as the

number of test scripts increased to 503, the test coverage for both states and transitions reached

the limit. Meanwhile, as seen from Fig. 8, the web reliability increases as the number of

non-failure test scripts increases. Some corresponding test scripts are shown in Table 5.

15

Table 4. Evaluation result for the ArchSymb example

Script # Result MTTF R C=95% C=99%
% State

coverage
% Arc

coverage

1 Pass NA 1 0 0 9.836065 4.385965

28 Fail 28.00001 0.964286 0.012756 0.016765 72.13114 56.14035

31 Pass 30.99997 0.967742 0.011541 0.015168 73.77049 57.89474

125 Pass 24.99999 0.96 0.004824 0.00634 98.36066 92.10526

149 Fail 21.28573 0.95302 0.004325 0.005684 98.36066 92.10526

156 Pass 22.28571 0.955128 0.004132 0.005431 98.36066 92.10526

187 Pass 26.71429 0.962567 0.003452 0.004537 98.36066 92.10526

218 Fail 27.24999 0.963303 0.003021 0.003971 98.36066 92.98246

249 Pass 31.125 0.967871 0.002647 0.003479 98.36066 92.98246

337 Pass 33.70002 0.970326 0.002013 0.002646 98.36066 97.36842

347 Pass 34.70002 0.971182 0.001956 0.00257 100 99.1228

404 Pass 40.39996 0.975248 0.00168 0.002208 100 99.1228

466 Pass 46.60001 0.978541 0.001457 0.001915 100 99.1228

503 Pass 50.30001 0.980119 0.00135 0.001775 100 100

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1 3
1

6
1

9
1

1
2
1

1
5
1

1
8
1

2
1
1

2
4
1

2
7
1

3
0
1

3
3
1

3
6
1

3
9
1

4
2
1

4
5
1

4
8
1

Figure 8. Reliability with 503 test scripts

16

Table 5. Test scripts of the ArchSymb example

Test Script: 28 Test Script: 41
Step Description Step Description

1
Software Not Invoked
1. to homepage
homepage

1
Software Not Invoked
1. to homepage
homepage

2
2. click to Support
Support

2
2. click to Support
Support

3
3. click to Contact us
Contact us

3
3. click to Contact us
Contact us

4
4. click to Software Terminated
Software Terminated

4
4. click to Software Terminated
Software Terminated

Test Script: 101 Test Script: 104
Step Description Step Description

1
Software Not Invoked
1. to homepage
homepage

1
Software Not Invoked
1. to homepage
homepage

2
2. click to Support
Support

2
2. click to ArchSymb Support
ArchSymb Support

3
3. click to Contact us
Contact us

3
3. click to Contact us
Contact us

4
4. click to Software Terminated
Software Terminated

4
4. click to Software Terminated
Software Terminated

6. Conclusions

In this paper, the issue of web site quality evaluation is investigated, and an automatic

mechanism of testing hyperlinks is developed.

To evaluate all possible navigation links, the rationale of statistical usage testing is

employed. Its philosophy essentially suggests organizing a complete and systemic method,

rather than the general ad hoc approach. One of the drawbacks of an ad hoc approach is that it

cannot cover all scenarios of navigation script. In contrast, the suggested approach based on

statistical usage testing may provide both complete testing coverage and quantitative analysis.

The proposed automatic framework has been shown to be effective for certifying quickly

link validity on the Internet. It has many benefits such as: helping in test planning, generating

test scripts automatically, and navigating script execution automatically and evaluating

hyperlinks automatically. Hence, the proposed testing framework is more practical and efficient

than other methods of testing using an ad hoc approach.

17

Moreover, web testing must validate not only hyperlinks but also web technologies. In

future research, other common techniques in e-business websites, such as ASP, forms, submit

buttons, CGI-script, etc., will be investigated and evaluated. Hereafter, we plan to set up a

web-based test environment for automatically validating e-business applications.

Acknowledgements

This research is supported by the National Science Council, ROC (Grant
NSC89-2213-E-029-00).

References

[1] Miller, E. (1999) “The WebSite Quality Challenge” (http://www.soft.com/Products/Web/
Technology/website.testing.html), Software Research, Inc..

[2] Tian, J. (1999) “Measurement and continuous improvement of software reliability
throughout software life-cycle,” Journal of Systems and Software 47, pp. 189-195.

[3] Yang, J.T., Huang, J.L., Wang, F.J., and Chu, W.C. (1999) “An object-oriented
architecture supporting web application testing,” 23rd Annual International Computer
Software and Applications Conference, October, pp. 2-7.

[4] Mercury Interactive Inc. Website: http://www.merc-int.com/, 2000.

[5] RSW Software Inc. Website: http://www.rswsoftware.com/, 2000.

[6] Whittaker, J. A., and Thomason, M.G. (1994) “A Markov Chain Model for Statistical
Software Testing,” IEEE Transactions on Software Engineering 20(10), October, pp.
812-824.

[7] Walton, G.H., Poore, J.H., and Trammell, C.J. (1995) “Statistical Testing of Software
Based on a Usage Model,” Software Practice and Experience 5(1), January 2, pp. 97-108.

[8] Chang, Wen-Kui (1997) “A Quadratic Programming Approach to Usage Modeling for
Software Reliability Certification,” Tunghai Journal 38, July, pp. 65-78.

[9] Chang, Wen-Kui, Twu, Stephen, and Teng, William (1999) “Ensuring Functional Test
Coverage For Avionics Control Applications Through Statistical Usage Testing,”
FESMA'99 - 2nd European Software Measurement Conference, Amsterdam, The
Netherlands, October 4-8, pp. 261-268.

[10] Whittaker, J. A., and Poore, J.H. (1993) "Markov Analysis of Software Specifications."
ACM Transactions on Software Engineering and Methodology, vol. 2(1), pp. 93-106.

[11] Chang, Wen-Kui, Wang, Che-Po, and Fu, Ching-Chun (1999) “A Study on Usage

18

Modeling for Software Reliability Certification via Prototyping Simulation,” The 3rd
Symposium on Reliability and Maintainability, Taiwan, October, pp.279-285.

[12] Storey, N. (1996) Safety-Critical Computer Systems. Addison Wesley Longman, ISBN:
0-201-42787-7.

[13] Lyu, M. (editor) (1996) Handbook Of Software Reliability Engineering, IEEE Computer
Society Press, McGraw-Hill, New York.

[14] Pham, H. (2000) Software Reliability, Springer-Verlag, ISBN: 981-3083-84-0.

[15] Q-Labs: ToolCertify User Guide, Version 4.0, 1999.

[16] ArchSymb Websites: http://www.archsymb.com/, 2000.

19

網際網路環境架構下超連結正確性

驗證的自動測試

張文貴* 洪昕凱*

摘 要

由於全球資訊網的便利性，導致它的應用蓬勃發展；然而卻因網站技術的困難度與瀏覽器的

差異性逐漸增加，網站的測試與品質管制也愈來愈困難。本論文將針對網際網路環境架構下的超

連結正確性驗證，提出自動測試的系統架構；首先我們將扼要地探討網路應用系統的一些特質，

以及討論網路品質的相關議題與其性能指標，接著研究如何運用軟體使用測試的技術在網路的領

域方面，並發展一套整體的驗證機制。它主要的觀念，在將所有可能的瀏覽路徑，透過馬可夫鏈

的特性，表示為一個案例模式，並據以用來自動產生測試網站系統的路徑案例檔。再追蹤這些路

徑案例的超連結執行結果，我們即可應用馬可夫鏈理論的分析運算，處理超連結的驗證評估工作。

這個自動測試的機制不僅能有效且系統性的驗證超連結，而且在協助規劃測試過程方面，更為有

效。

關鍵詞：網際網路、軟體性能測試、軟體使用測試、馬可夫鏈、物件導向法。

* 東海大學資訊系

