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Abstract

Through the calculus of variation for establishing one-player game theory, an optimal control

theory and bounded real lemma for descriptor systems are conducted to develop a design method

for robustH∞ control laws. Thereafter, the developed control methods are applied to treat vibra-

tion suppression for beam-plate structures. Numerical simulation is presented to illustrate the design

procedure for state feedback controller.

1 Introduction

Recently, the numerical computation on solving Differential-Algebraic Equations (DAEs, also

known as descriptor systems, singular systems, generalized state-space systems) is an active area of

applied mathematical research [1]. This type of systems arises from circuit and network analysis

[2,3], as well as distributed-parameter consideration in other engineering disciplines [3,4]. Examples

may include a safe reentry profile for the space shuttle [5], a motion analysis of constrained robot

systems [6], the dynamic Leontief model for economic production sectors [7], and the derivation of

governing equations for chemical reactors [8]etc.. Matured numerical softwares [4,9–11] concerning

DAE have been established to provide accurate and reliable solutions for descriptor systems. The

direct application of DAE formulation to physical systems becomes feasible and saves great effort for

preconditioning particular DAEs by eliminating as many redundant variables as possible.

Lewis [12] proved that the descriptor system is stable and impulse-free if and only if the system

matrix pair satisfies the generalized Lyapunov equation (GLE). Cobb [13] also considered the duality
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between controllability and observability. At the same time, many researchers have moved forward

to treat linear regulator problems for descriptor systems for minimizing a given quadratic functional.

Cobb [14] first gave a necessary and sufficient condition for the existence of an optimal solution to

this problem. But variational calculus for descriptor system was derived by Jonckheere [15] until

1988. Some other results on the robustness for linear regulator problems [16,17] were also obtained.

Recently, Kunkel and Mehrmann [18] studied linear regulator problems with time-variant coefficients.

The robustH∞ control theory is the most active research field in control theory during the past

three decades. Nowadays, this line of research is moving toward establishing control theories for

descriptor systems. Solutions of theH∞ control problem for descriptor system were given by Takaba

et al. [19]. They proved the sufficient conditions for the existence of solutions by using theJ-spectral

factorization. More recently, Masubuchiet al. [20] have considered a similar problem by using a

matrix inequalities approach. Although, their solutions may be obtained by using LMI numerical

tool, but they rely on two generalized algebraic Riccati inequalities (GARI) involving two unknown

parameters plus two to-be-determined variables. Katayama and Minamino [21] used the generalized

Lyapunov theorem (see Takabaet al. [22]) to solve the linear regular problem for which the control

law and optimal cost are computed based on the solution of the generalized Riccati differential equa-

tion (GRDE) and the generalized algebraic Riccati equation (GARE) for finite- and infinite- horizon

cases, respectively. The corresponding GARE solutions forH∞ control problems are presented by

Wanget al. [23]. They gave the necessary and sufficient conditions for the existence of a solution to

H∞ control in terms of two GARE’s. However, the construction of all solutions from center controller

is still under development.

Attempts made in this paper are to develop theH∞ control theory for descriptor systems through a

game theoretical approach which has successfully used to develop theH∞ control theory for nonlinear

state-space systems [24]. This paper is organized as follows. Section 2 is concerned with the estab-

lishment of optimization theories for nonlinear descriptor systems through the use of the calculus of

variation. Section 3 presents a unified approach to treat linear regulator control and robustH∞ control

problems. The bounded real lemma for linear descriptor system is established and theH∞ control

is then synthesized by using this lemma. In Section 4, the control theory developed here is applied

to suppress unacceptable vibration behaviors of the smart beam-plate structures. Section 5 presents

some conclusions based on the findings of the study.
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2 Optimization Theory for Descriptor Systems

In this section, optimization theories for descriptor systems are established. The optimization

process is performed by minimizing a cost functional which is selected to make the descriptor system

exhibit a desired type of performances.

The calculus of variation is applied to establish the one-player game theory associated with de-

scriptor systems which is the base for further developing the control theory. We consider the following

dynamical system:

Eẋ = f(x(t),u(t), t), Ex(t0) = Ex0 (2.1)

wheref satisfies the required regularity conditions. The associated cost functionalJ(x0,u, t0, t f ) is

given by

J(x0,u, t0, t f ) = φ(x(t f ), t f )+
∫ t f

t0
F(x(t),u(t), t)dt, (2.2)

whereφ(x(t), t) andF(x(t),u(t), t) are sufficiently differentiable real-value functions. And, the final

state condition is represented as:

ψ(x(t f ), t f ) = 0 (2.3)

for a given continuous functionψ. The admissible control setU is defined as

U =
{

u ∈ L2(R,Rm×1) | the solution of (2.1) satisfy (2.3)
}

(2.4)

Our purpose is to select an optimal strategyu∗(t) from U within the interval[t0, t f ] that drives the

plant (2.1) along a trajectoryx∗(t) such thatJ(x0,u, t0, t f ) is minimized, and (2.3) is also satisfied.

Since the state variablex during the minimization of (2.2) must satisfy the two constraints: (2.1)

and (2.3), we cannot apply the calculus of variation directly. The common way to treat this problem

is by using the method of Lagrange multipier. As point out by Luenberger [25, section 9], a suffi-

cient condition for the Lagrange multiplier to exists is that the constraint have a property known as

“regularity”. Unfortunately, in the case of the constraint (2.1), regularity is equivalent to complete

reachability [26]. Jonckheere [15] does not use Lagrange multiplier for the dynamic constraint; in-

stead he applies the calculus of variations directly by taking a weak variation about the trajectory of

x, Eẋ, andu with additional requirement that this trajectory must be impulsive-free. Otherwise, if

the descriptor system (2.1) has impulsive mode, the second term in (2.2) may become infinity. This

explains why Jonckheere [15] assumes the trajectory must be impulsive free.
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Suppose the system (2.1) is impulsive free, we use the same method in [15] to treat this dynamic

constraint. On the other hand, for the static constraint (2.3), we apply the Lagrange multipiler (some-

times calledcostate vector) ν ∈R`×1 to ajoin it into the cost functional (2.2). Define theHamiltonian

functionas

H(x(t),u(t),λ(t), t) = F(x(t),u(t), t)+ λ(t)Tf(x(t),u(t), t), (2.5)

whereλ(t) ∈ Rn×1. The augmented cost functional is then defined by

J′(x0,u,λ,ν, t0, t f ) = φ(x(t f ), t f )+ νTψ(x(t f ), t f )

+
∫ t f

t0

[
H(x(t),u(t),λ(t), t)−λT(t) f (x(t),u(t), t)

]
dt.

after using the relationship (2.5). Since the dynamic constraint (2.1) needs to be satisfied and perform

the integration by part to eliminatėx, one arrives at

J′(x0,u,λ,ν, t0, t f ) = Φ(x(t f ), t f )−λT(t f )Ex(t f )+ λT(t0)Ex(t0)

+
∫ t f

t0

[
H(x,u,λ, t)+ λ̇T

Ex
]

dt, (2.6)

where

Φ(x(t f ), t f ) = φ(x(t f ), t f )+ νTψ(x(t f ), t f ). (2.7)

In order to solve this minimization problem, we consider the following small perturbations:

x(t)→ x(t)+ δx(t), u(t)→ u(t)+ δu(t), t f → t f + δt f .

Thefirst andsecond variationsof augmented cost functional beδJ′ andδ2J′, respectively, are equal

to the linear and quadratic increments inJ′ due to the variationsδx, δu, andδt f , i.e., the difference

between

J′(x0,u+ δu,λ,ν, t0, t f + δt f )
∣∣
x=x+δx andJ′(x0,u,λ,ν, t0, t f ).

Since the final state is governed by the functionψ, henceδx(t f + δt f ) andδt f must also satisfy

the following relationship:

δψ(x(t f + δt f )+ δx(t f + δt f ), t f + δt f ) = 0 (2.8)

whereδx(t f + δt f ) satisfies the following relation:

δ[x(t f )] =
d
dτ

[x(t f + τδt f )+ τδx(t f + τδt f )]
∣∣∣∣
τ=0

= δx(t f )+ ẋ(t f )δt f (2.9)
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with δx f (t f ) denoting the variation ofx(t) when the timet is held fixed and equal tot f . Thus the

variations between the final state,δx(t f ), and final time,δt f , are linked to each other with the rela-

tionship.

After introducing the Lagrange multiplierν to adjoin (2.3) into the augmented cost functionalJ′,

these two perturbations can be considered to variate independently. Using Leibniz’s rule,δJ′ andδ2J

are computed and represented by

δJ′ = δt f

[
dΦ
dt

+F

]
t f

+ δx(t f )T
[

∂Φ
∂x
−ETλ

]
t f

+
∫ t f

t0

[
δuT ∂H

∂u
+ δxT

(
ETλ̇ +

∂H
∂x

)]
dt (2.10)

δ2J′ =
[

δx(t f )T δt f

] ∂2Φ
∂x2

∂
∂x

(
dΦ
dt +F

)
∂

∂x

(
dΦ
dt +F

)T d
dt

[
d
dt

(
Φ + λTEx

)
+2F

] 
t f

 δx(t f )

δt f


+2δu(t f )T ∂H

∂u

∣∣∣∣
t f

+
∫ t f

t0

[
δxT δuT

] ∂2H
∂x2

∂2H
∂x∂u

∂2H
∂u∂x

∂2H
∂u2

 δx

δu

dt. (2.11)

Setting to zero the coefficients of the independent variationsδx andδu in (2.10) with some alge-

braic operations yields the necessary condition for a minimum:

Minimum Principle

min
u∈U

H(x,u,λ, t), i.e.,
∂H
∂u

= 0 for all t ∈ [t0, t f ]

ẋ =
∂H
∂λ
, Ex(0) = Ex0 equation of motion forx

λ̇ =−∂H
∂x
, ETλ(t f ) =

∂Φ
∂x

equation of motion forλ
∂Φ
∂t

∣∣∣∣
t f

+H(x(t f ),u(t f ),λ(t f ), t f ) = 0

ψ(x(t f ), t f ) = 0

transversality condition

(2.12)

Another necessary condition for an extremum of a functional to be a minimum was the nonnega-

tiveness of the second variation, i.e.

δ2J′ ≥ 0 (2.13)

From (2.11), after using the fact that∂H∗/∂u|t f
= 0, the following two matrices should be nonnega-
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tive:  ∂2Φ∗
∂x2

∂
∂x

(
dΦ∗
dt +F∗

)
∂
∂x

(
dΦ∗
dt +F∗

)T
d
dt

[
d
dt

(
Φ∗+(λ∗)TEx∗

)
+2F∗

]


t∗f

≥ 0, (2.14)

and  ∂2H∗

∂x2
∂2H∗

∂x∂u
∂2H∗

∂u∂x
∂2H∗

∂u2

≥ 0 for all t ∈ [t0, t∗f ] (2.15)

whereΦ∗ = Φ(x∗(t), t) andF∗ = F(x∗(t),u∗(t), t). The detail derivation can be found in [29].

3 Robust Control Theory for Descriptor Systems

In this section, we develop the necessary control design method on the basis of the optimiza-

tion theory developed in section 2. Two types of control problems are considered herein: one is

the linear quadratic optimal control problem and the other is the robustH∞ state feedback control

problem.

3.1 Control Concepts in Linear Descriptor Systems

Let us consider the descriptor system as given by

Eẋ = Ax +B1w+B2u, (3.1a)

z = C1x+D12u, (3.1b)

y = C2x, (3.1c)

herex ∈ Rn is the descriptor variable,w ∈ Rq is the exogenous input,u ∈ Rm is the control input,

z ∈ Rs is the controlled output andy ∈ Rp is the measured output. The matrixE ∈ Rn×n has the

rankr ≤ n and the other matrices have appropriate sizes. In real systems, the control inputu(t) often

subjects to a constraintπ. We shall useU to denote the collection ofu(t) subject to constraintπ, which

is called the admissible control set, and anyu(t)∈U is called admissible control input. For descriptor

systems, the admissible control input should be a piecewise sufficiently continuously differentiable

function such that the system (3.1) has consistent solution. The constraintπ often is a vector function

of state, control input, and timet, or π(x(t),u(t), t).
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Definition 3.1

(I) A pencil sE−A (or a pair(E,A)) is regular if det(sE−A) is not identically zero.

(II) For regular pencilsE−A, the finite eigenvalues ofsE−A is said to be thefinite dynamic modes

of (E,A). If all the finite dynamic modes are stable, we say that(E,A) is stable.

(III) For regular pencilsE−A, we define two modes for the infinite eigenvalues of thesE−A,

which are the zero eigenvalues of the pencilE−λA. The infinite eigenvalues corresponding

to the generalized eigenvectorsv with Ev = 0 are thenondynamic modesof (E,A). Suppose

thatEv1 = 0, then the infinite eigenvalues associated with the generalized principal vectorsvk

satisfyingEvk = Avk−1 (k≥ 2) are theimpulsive modesof (E,A).

(IV) A pencil (E,A) is admissibleif it is regular and has neither impulsive modes nor unstable finite

modes.

Takabaet. al.[22] proposed a necessary and sufficient algebraic condition (generalized Lyapunov

equation, GLE) for the admissibility of a pair(E,A), which is assumed to beregular:

Lemma 3.2 [22] Suppose that the pencil sE−A is regular and that(E,A,C) is impulse observable

and finite dynamics detectable, then(E,A) is admissible if and only if there exists a solutionX to

Generalized Lyapunov Equation (GLE):

ETX = XTE≥ 0, (3.2a)

AX +XTA +CTC = 0. (3.2b)

When(E,A) is in SVD coordinate system of the form

E =

 I r 0

0 0

 , A =

 A11 A12

A21 A22


then(E,A) is regular and impulsive free if and only ifA22 is invertible (see [26] for the proof).

Since the regularity of the plant happens to be destroyed by feedback input, Masubuchi [20]

proposed a matrix inequality condition to state the admissibility of(E,A) without assuming that

(E,A) is regular.
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Lemma 3.3 ( [20], Lemma 2)A pair (E,A) is admissible if and only if there existsX ∈ Rn×n such

that

ETX = XTE≥ 0, (3.3a)

AX +XTA < 0. (3.3b)

3.2 Bounded Real Lemma

Consider the descriptor systemG from (3.1) without control input and measured output devices:

Eẋ = Ax +Bw, (3.4a)

z = Cx (3.4b)

where the input-output block diagram of systemG is shown as below:

w z
- G -

We assume that the system isregular andimpulse freeand theH∞-norm of systemG is defined by

‖G‖∞ = sup
‖w‖2 6=0

‖z‖2
‖w‖2

= γ∞, w, z∈ L2[0,∞) (3.5)

where the infinite-horizon Lebesque 2-spaceL2[0,∞) is defined by

L2[0,∞) =

{
f

∣∣∣∣∣f : [0,∞)→ Rn and‖f‖2
4
=
(∫ ∞

0
f(t)Tf(t)dt

) 1
2

< ∞

}

whence all the functions inL2[0,∞) must be stable and converge to zero ast→∞. The linear descrip-

tor system (3.4) is said to beγ-dissipativeif its H -norm is less thanγ.

Theorem 3.4 (Bounded Real Lemma)

Consider the system (3.4). The pair(E,A) is admissible and‖G‖∞ < γ if and only if there exists

X ∈ Rn×n such that

ETX = XTE≥ 0, (3.6a)

ATX +XTA +CTC+
1
γ2XTBBTX = 0. (3.6b)
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Proof: Suppose there exists a quadratic functionV(ξ) = ξTETXTξ, XT > 0, andγ > 0 such that for

all t [27],

d
dt

V(x)+zTz− γ2wTw≤ 0 for all x andw satisfying (3.4). (3.7)

Then,γ∞ is less thanγ. To show this, we integrate (3.7) from 0 to arbitraryT, with the initial state

x(0) = 0, to get

V(x(T))+
∫ T

0

(
zTz− γ2wTw

)
≤ 0. (3.8)

sinceV(x(T))≥ 0, this implies

‖z‖2
‖w‖2

≤ γ, for all w.

Hence,

γ∞ = inf

γ

∣∣∣∣∣∣∣
min
w∈H2

∫ T

0

(
γ2w(t)Tw(t)−z(t)Tz(t)

)
dt ≥ 0,

x,w,z satisfy (3.4) for allT

 , (3.9)

Thus,‖G‖∞ < γ∞ if and only if for all T there exists aV(x(T)≥ 0 such thatγ2‖w‖22−‖z‖22≥V(x(T))

for all w ∈ L2[0,∞). This corresponds to a minimization problem with the associated cost functionJ

defined by

J(x,w,T) =
1
2

∫ T

0

(
γ2w(t)Tw(t)−z(t)Tz(t)

)
dt (3.10)

subjected to the dynamic constraint (3.4).

The computation of theH∞-normγ∞ can be divided into two steps:

1. For any givenγ, compute the minimal value ofJ, i.e. J∗(x∗,w∗),

2. Determinateγ∞ which is equal to the smallestγ such that the condition (3.9) holds.

Substituting (3.4b) into (3.9), it yields

J(x,w,T) =
1
2

∫ T

0

(
γ2w(t)Tw(t)−x(t)TCTCx

)
dt (3.11)

The condition (3.8) for allw leads to the non-negativity of the matrix

W0 =

 −CTC 0

0 γ2I


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Therefore, we can apply theMinimum Principle to solve this optimization problem. It gives

−ETṖ = PTA +ATP−CTC− 1
γ2PTBBTP, ETP = PTE, P(T) =−XT , (3.12)

and(E,A− 1
γ2BBTP) is stable and impulsive free. Using the factx(0) = 0, the cost function in (3.11)

can be rewritten as

J(x,w,T) =
1
2

∫ T

0

(
γ2‖w−w∗‖22−

d
dt

(xTETPx)
)

dt

= −1
2

x(T)TETP(T)x+
1
2

∫ T

0
γ2‖w−w∗‖22dt ≥ 1

2
V(x(T)), ∀ w

where

w∗(t) =− 1
γ2BTP(t)x(t).

SettingP(t) =−X(t) whereX(t) is the solution of following GRDE:

−ETẊ = XTA +ATX +CTC+ 1
γ2XTBBTX,

ETX = XTE≥ 0, X(T) = XT

(3.13)

with stable and impulsive free(E,A + 1
γ2BTBX), we have the minimum ofJ as

J∗(x∗,w∗) =
1
2

x(T)TETXTx(T)≥ 0 (3.14)

or, equivalently,

min
w∈H2

∫ T

0

(
γ2w(t)Tw(t)−z(t)Tz(t)

)
dt = V(x(T)), (3.15)

and the worst case perturbation is then given by

w∗(t) =
1
γ2BTX(t)x∗(t). (3.16)

For steady-state solution, we setT→ ∞, i.e. X(t) = X, and rewrite (3.13) and (3.16) in terms ofX to

get

XTA +ATX +CTC+
1
γ2XTBBTX = 0, ETX = XTE≥ 0, (3.17)

and

w∗(t) =
1
γ2BTXx∗(t), (3.18)
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wherex∗ is the trajectory of the following stable and impulsive-free closed-loop system

Eẋ(t) = (A +
1
γ2BBTX)x(t). (3.19)

The solution of GARE (3.17) can then be expressed in terms of the Hamiltonian matrixH:

P = Ric(E,H), H =

 A 1
γ2BBT

−CTC −AT

 . (3.20)

2

We need the following lemma to compute theH∞-norm:

Lemma 3.5 [23] Suppose that(E,A) is impulse-free,Q = QT, R≥ 0, and the pencil s[E 0]+[A R]

has full row rank on the imaginary axis. Furthermore, suppose that GARI: ATP+PTA +Q +PTRP< 0

ETP = PTE
(3.21)

has a solutionP with ETP = PTE≥ 0. Under these condition, the Hamiltonian pencil:

s

 E 0

0 ET

−
 A R

−Q −AT

 4= sĒ− H̄ (3.22)

has no pure imaginary zeros and(Ē, H̄) is impulse-free.

For our problem, the Hamiltonian functionH is defined by (3.20). The computation ofγ∞ is

determined by the smallestγ such that the correspondingsĒ−H has no pure imaginary zeros.

3.3 H∞ State Feedback Controller Synthesis

In the following analysis, the measure output equation is ignored. SettingC1 = C andD12 = D for

simplicity, the system from (3.1) is then described by

Eẋ = Ax +B1w+B2u (3.23a)

z = Cx+Du (3.23b)

When no control input is introduced, the system (3.23) becomes

G :
Eẋ = Ax +B1w

z = Cx
(3.24)
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hereG represents the uncontrolled system with‖z‖2 ≥ γ‖w‖2. We can test the dissipativity of this

system by using bounded real lemma (Theorem 3.4).

If it is not γ-dissipative, we may adjust the system properties via a designed controlleru of the

form

u =−Kx (3.25)

such that the closed loop system isγ-dissipative, and this controlled system with‖z‖2 ≤ γ‖w‖2 is

shown as the following block diagram:

-w
G

- z
-

u
-

x

K ��

The purpose of this subsection is devoted to design the control lawK in (3.25) such that the closed

loop system isγ-dissipative, i.e. the exogenous inputw and the system outputz satisfy the following

relationship: ∫ T

0
z(t)Tz(t)dt ≤ γ2

∫ T

0
w(t)Tw(t)dt (3.26)

which implies the following inequality:

min
u

max
w

∫ T

0
(z(t)Tz− γ2w(t)Tw(t))dt ≤ 0

or, equivalently,

max
u

min
w

∫ T

0
(z(t)Tz− γ2w(t)Tw(t))dt ≥ 0 (3.27)

Thus, theH∞ control problem is a two-player game theory. One player isw standing for the effect

of the environment; the other player isu standing for the wisdom of the designer to overcome the

defects or drawbacks.

Theorem 3.6 Given the system (3.23), suppose that Assumption 2 holds andX be the solution of the

GARE

−ETẊ = XT[A +B2(DTD)−1DTC]+ [A +B2(DTD)−1DTC]TX

+CT(I −D(DTD)−1DT)C+XT( 1
γ2B1BT

1−B2(DTD)−1BT
2)X

ETX = XTE≥ 0,

(3.28)
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such that(E,A −B2(DTD)−1(BT
2X + DTC)) are stable and impulse free. Then an state feedback

control law is given by

u =−K∞x, K∞ = (DTD)−1(DTC+BT
2X) (3.29)

such that the closed-loop system

Eẋ = (A−B2K∞)x+B1w (3.30a)

z = (C−DK∞)x (3.30b)

is γ-dissipative.

Proof: Define the cost function for this optimization problem as

J(u,w) =
1
2

∫ T

0
(γ2w(t)Tw(t)−z(t)Tz(t))dt

=
1
2

∫ T

0

(
γ2wTw− (Cx+Du)T(Cx+Du)

)
dt (3.31)

after using the relation (3.23b) and the corresponding Hamiltonian functionH is given by

H =
1
2

γ2wTw− 1
2

(Cx+Du)T(Cx+Du)+ λT(Ax +B1w+B2u)

=
1
2

γ2wTw− 1
2

xTCTCx− 1
2

uTDTDu−uTDTCx+ λT(Ax +B1w+B2u)

(3.32)

The optimal control strategyu∗ and the worst case disturbancew∗ are computed according to∂H
∂u∗ = 0

and ∂H
∂w∗ = 0, respectively, in which

∂H
∂u

=−DTDu−DTCx+BT
2λ = 0

implies

u∗ = (DTD)−1(BT
2λ−DTCx

)
(3.33)

and

∂H
∂w

= γ2w+BT
1λ = 0

implies

w∗ =− 1
γ2BT

1λ (3.34)
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Putting (3.33) and (3.34) back into (3.32) yields

H(x,λ,u∗,w∗, t) =
1
2

1
γ2λTB1BT

1λ− 1
2

xTCTCx

−(λTB2−xTCTD)(DTD)−1DTCx

−1
2

(λTB2−xTCTD)(DTD)−1DTD(DTD)−1(BT
2λ−DTCx)

+λTAx− 1
γ2λTB1BT

1λ + λTB2(DTD)−1(BT
2λ−DTCx)

= −1
2

xTCTC[I −D(DTD)−1DT]Cx

+λT[B2(DTD)−1BT
2−

1
γ2B1BT

1)λ

+λT[A +B2(DTD)−1DTC]x (3.35)

Let P(t) be the solution of the following GRDE:

−ETṖ = PT[A +B2(DTD)−1DTC]+ [A +B2(DTD)−1DTC]TP

−CT(I −D(DTD)−1DT)C+PT( 1
γ2B1BT

1−B2(DTD)−1BT
2)P

ETP = PTE

(3.36)

such that(E,A− 1
γ2B1BT

1P+ B2(DTD)−1(BT
2P−DTC)) is stable and impulsive free. From (3.23a)

and (3.36), we have

d
dt

xTETPx = ẋTETPx+xTETṖ+xTETPẋ

= xTCTCx+xT[2PTB1w+
1
γ2B1BT

1Px]

+xT[2PTB2u−2CTD(DTD)−1BT
2P−CTD(DTD)−1DTC]x

(3.37)

Substituting (3.37) into (3.31), it yields

J(x,w) =
1
2

∫ T

0

(
γ2‖w−w∗‖22− (u−u∗)TDTD(u−u∗)− d

dt
(xTETPx)

)
dt

= −1
2

x(T)TETP(T)x+
1
2

∫ T

0

(
γ2‖w−w∗‖22−‖D(u−u∗)‖22

)
dt,

(3.38)

whereu∗ andw∗ are

u∗(t) = (DTD)−1(BT
2P−DTC

)
x(t) (3.39)
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and

w∗(t) =− 1
γ2BT

1Px(t), (3.40)

respectively. Comparing (3.39) and (3.40) with (3.33) and (3.34), respectively, the following relation-

ship holds for optimal values ofλ∗ andx∗, i.e.,

λ∗(t) = Px∗(t) (3.41)

Thus, the optimal value of the cost function is given by

J(u∗,w∗) = max
u

min
w

J(u,w) =−1
2

xTETP(t)x≥ 0 (3.42)

which impliesP(t)≤ 0. SettingX(t) =−P(t), it follows

−ETẊ = XT[A +B2(DTD)−1DTC]+ [A +B2(DTD)−1DTC]TX

+CT(I −D(DTD)−1DT)C+XT( 1
γ2B1BT

1−B2(DTD)−1BT
2)X

ETX = XTE≥ 0,

(3.43)

such that(E,A + 1
γ2B1BT

1X−B2(DTD)−1(BT
2X +DTC)) is stable and impulsive free. And the optimal

cost function becomes

J∗(u∗,w∗) =
1
2

x(T)TETX(T)x(T)≥ 0 (3.44)

i.e. the closed loop system (3.24) isγ-dissipative.

Next, letT→∞, we haveX(t)→ X andẊ = 0 ThusX is the steady state solution of (3.43) which

yields

X = Ric(E,H), H =

 A +B2(DTD)−1DTC 1
γ2(B1BT

1−B2(DTD)−1BT
2)

−CT(I −D(DTD)−1DT)C −(A +B2(DTD)−1DTC)T

 (3.45)

The optimal controlu∗ and the worst case disturbancew∗ are given by

u∗ = (DTD)−1(DTC+BT
2X)x∗

and

w∗ =
1
γ2BT

1Xx∗
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respectively, wherex∗ is the optimal trajectory of the closed-loop system from (3.23) and (3.39) after

substitutingu = u∗ andw = w∗. When there exists aγ, sayγ∞, such thatJ(u∗,w∗) = 0, then the

saddle point condition

J(u,w∗)≤ J(u∗,w∗) = 0≤ J(u∗,w)

is satisfied. This type of game is called zero-sum differential game which asserts the best strategies

are used by both players. The corresponding controller is called the optimal controller. On the other

hand, the controller is called suboptimal controller. 2

4 Example: Vibration Suppression of Smart Beam-Plates

In order to study the effect on controlling the undesirable vibration phenomena, we consider a

laminated beam-plate structure bonded with a pair of sensor and actuator made of PVDF materials

under the influence of a impact forceP(t) acting onx = L/2 at t = 0. In addition, both ends of this

structure are hinged with rotational restraints with spring constantsK̄0 = K̄1 = 1000. The schematic

diagram for the structure is shown in Fig. 1. The material properties are listed in Table 4 [28]. The

mass per unit lengthr and effective bending stiffnessD are 0.0773998 and 2.0122815, respectively.

L -�

K0 ��


���������@@

K1��
�	��������� ��x

Figure 1: The configuration of a hinged beam-plate with rotational restraints.

After applying the technique from [29, Chapter 4], the descriptor model of this beam-plate struc-

ture is then given by

Eẋ(t) = Ax(t)+B1P(t)+B2Va(t) (4.1a)

z(t) = Cx(t) (4.1b)

(4.1c)
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Table 1: Material properties for a typical smart beam-plate

I. PVDF material

piezoelectric strain constant d31 23.0×10−12 m/Volt

piezoelectric stress constant g31 216.0×10−3 Volt ·m/N

electro-mechanical coupling factor k31 0.12

dielectric constant k3t 12.0

Young’s Modulus E13 64.5×109 N/m2

density ρs,ρa 1800.0 Kg/m3

Kelvin-Voigt damping CDs,CDa 2.010×10−5 sec·N/m2

thickness ts,ta 0.0254cm

width Ws,Wa 2.03cm

II. Laminated material

Young’s modulus Eb 73.0×109 N/m2

density ρb 1240.0 Kg/m3

Kelvin-Voigt damping CDb 1.378×10−5 sec·N/m2

viscous-damping c(t) 0.0 sec·N/m2

thickness tb 0.16cm

width Wb 2.03cm

length L 28.4 cm
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whereP(t) andVa denote the impact force and input voltage of piezo-actuator. We don’t include the

sensor equation here. Some typical values of the corresponding system matricesE, A, B1, B2, andC

with uniform sensor and actuator are shown in Table 2 for whenN = 5 for illustration.

The state feedback controller is designed by using Theorem 3.6. Firstly, we choose the value for

γ to be 1.0. If there is no solutionX exist for the GARE (3.43), then we may increase the value ofγ ;

otherwise, we decrease this value until a solution is found. Fig. 2 shows a satisfactory control effect

to suppress unacceptable vibration forN = 6.

(a) before control (b) after control

(γ∞ = 7.4815,ω∞ = 729) (γ∞ = 0.1804,ω∞ = 984)

Figure 2: Vibration suppression effect on a hinged beam-plate under the influence of concentrated

load 5δ(t)δ(x−L/2)

The corresponding control gain matrix is given by

K =
[

10001 7560 9998 3303 6654 6283 8497 6857 8782 684 5608 6624 7264 1985
]

Simultaneously, the system’sH∞ norm is reduced from 7.8415 to 0.1804 after introducing control

and the corresponding frequencyω∞ for the occurrence of theH∞ norm is also moved from 729 to a

higher value 984. The result shows that the state feedback control theory developed in this study is

effective and adequate.

5 Conclusions

This paper has presented theH∞ state feedback control theory to treat the dynamic response and

control of descriptor systems. The one-player and two-player game theories for descriptor systems

have been derived. Linear state-feedbackH∞ control theory has been conducted by using bounded real

lemma. On the basis of theoretical analysis without experiment, simulation results presented in the

paper suggest that this approach for smart structure control is effective. And we also recognized that
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Table 2: Typical values of system matricesE, A, B1, B2, andC whenN = 5

E =



1. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 1. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 1. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 1. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 1. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 1. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 1. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 1. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.



A =



0. 1. 0. 0. 0. 0. 0. 0. 0. 0.

−97.41 0. 0. 0. 0. 0. 0. 0. 62. −6.3

0. 0. 0. 1. 0. 0. 0. 0. 0. 0.

0. 0. −1558.55 0. 0. 0. 0. 0. −496.1 −12.6

0. 0. 0. 0. 0. 1. 0. 0. 0. 0.

0. 0. 0. 0. −7890.14 0. 0. 0. 1647.3 −18.8

0. 0. 0. 0. 0. 0. 0. 1. 0. 0.

0. 0. 0. 0. 0. 0. −24936.73 0. −3968.8 −25.1

−31.0 0. 248.1 0. −837.2 0. 1984.4 0. 592.2 1.0

−3.1 0. −6.3 0. −9.4 0. −12.6 0. −1.0 0.



B1 =



0. 0. 0. 0. 0. 0. 0.

1. 0. 0. 0. 0. 2. 0.

0. 0. 0. 0. 0. 0. 0.

0. 1. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0.

0. 0. 1. 0. 0. −2. 0.

0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 1. 0. 0. −1.

0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0.


B2 =

[
0. 0. 0. 0.0047289 0. 0.0072934 0. 0.0189158 0. 0.000094

]
C1 =

[
14.70 0. 29.41 0. 44.11 0. 58.82 0. 0. 0.

]
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the development of a good and reliable software to solve the generalized Riccati differential equation

and algebraic Riccati equation is a key issue to the successful applications of control theories for

descriptor systems to practical problems.
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