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Abstract

Through the calculus of variation for establishing one-player game theory, an optimal control
theory and bounded real lemma for descriptor systems are conducted to develop a design method
for robust #,, control laws. Thereafter, the developed control methods are applied to treat vibra-
tion suppression for beam-plate structures. Numerical simulation is presented to illustrate the design

procedure for state feedback controller.

1 Introduction

Recently, the numerical computation on solving Differential-Algebraic Equations (DAEs, also
known as descriptor systems, singular systems, generalized state-space systems) is an active area of
applied mathematical research [1]. This type of systems arises from circuit and network analysis
[2,3], as well as distributed-parameter consideration in other engineering disciplines [3,4]. Examples
may include a safe reentry profile for the space shuttle [5], a motion analysis of constrained robot
systems [6], the dynamic Leontief model for economic production sectors [7], and the derivation of
governing equations for chemical reactors¢&]. Matured numerical softwares [4,9—-11] concerning
DAE have been established to provide accurate and reliable solutions for descriptor systems. The
direct application of DAE formulation to physical systems becomes feasible and saves great effort for
preconditioning particular DAEs by eliminating as many redundant variables as possible.

Lewis [12] proved that the descriptor system is stable and impulse-free if and only if the system
matrix pair satisfies the generalized Lyapunov equation (GLE). Cobb [13] also considered the duality
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between controllability and observability. At the same time, many researchers have moved forward
to treat linear regulator problems for descriptor systems for minimizing a given quadratic functional.
Cobb [14] first gave a necessary and sufficient condition for the existence of an optimal solution to
this problem. But variational calculus for descriptor system was derived by Jonckheere [15] until
1988. Some other results on the robustness for linear regulator problems [16, 17] were also obtained.
Recently, Kunkel and Mehrmann [18] studied linear regulator problems with time-variant coefficients.

The robust#, control theory is the most active research field in control theory during the past
three decades. Nowadays, this line of research is moving toward establishing control theories for
descriptor systems. Solutions of th&, control problem for descriptor system were given by Takaba
et al.[19]. They proved the sufficient conditions for the existence of solutions by usinygpectral
factorization. More recently, Masubucét al. [20] have considered a similar problem by using a
matrix inequalities approach. Although, their solutions may be obtained by using LMI numerical
tool, but they rely on two generalized algebraic Riccati inequalities (GARI) involving two unknown
parameters plus two to-be-determined variables. Katayama and Minamino [21] used the generalized
Lyapunov theorem (see Takabaal. [22]) to solve the linear regular problem for which the control
law and optimal cost are computed based on the solution of the generalized Riccati differential equa-
tion (GRDE) and the generalized algebraic Riccati equation (GARE) for finite- and infinite- horizon
cases, respectively. The corresponding GARE solutiongfoicontrol problems are presented by
Wanget al.[23]. They gave the necessary and sufficient conditions for the existence of a solution to
Hs control in terms of two GARE's. However, the construction of all solutions from center controller
is still under development.

Attempts made in this paper are to developfiecontrol theory for descriptor systems through a
game theoretical approach which has successfully used to develég tentrol theory for nonlinear
state-space systems [24]. This paper is organized as follows. Section 2 is concerned with the estab-
lishment of optimization theories for nonlinear descriptor systems through the use of the calculus of
variation. Section 3 presents a unified approach to treat linear regulator control andiiglmasttrol
problems. The bounded real lemma for linear descriptor system is established atd toatrol
is then synthesized by using this lemma. In Section 4, the control theory developed here is applied
to suppress unacceptable vibration behaviors of the smart beam-plate structures. Section 5 presents
some conclusions based on the findings of the study.



2 Optimization Theory for Descriptor Systems

In this section, optimization theories for descriptor systems are established. The optimization
process is performed by minimizing a cost functional which is selected to make the descriptor system
exhibit a desired type of performances.

The calculus of variation is applied to establish the one-player game theory associated with de-
scriptor systems which is the base for further developing the control theory. We consider the following

dynamical system:
Ex =f(x(t),u(t),t), Ex(to) =Exo (2.1)

wheref satisfies the required regularity conditions. The associated cost funclio@al, to,ts) is
given by
ts
J(Xo,U,to,t5) = @(X(tf),t) + \ F(x(t),u(t),t)dt, (2.2)
0

where@(x(t),t) andF (x(t),u(t),t) are sufficiently differentiable real-value functions. And, the final
state condition is represented as:

W(x(tr),tr) =0 (2.3)
for a given continuous functiof. The admissible control sk is defined as
U = {u e £L4R,R™1) | the solution of (2.1) satisfy (2.3) (2.4)

Our purpose is to select an optimal strategyt) from U within the intervallto,ts] that drives the
plant (2.1) along a trajectory(t) such thatl(xo, u,to,ts) is minimized, and (2.3) is also satisfied.

Since the state variableduring the minimization of (2.2) must satisfy the two constraints: (2.1)
and (2.3), we cannot apply the calculus of variation directly. The common way to treat this problem
is by using the method of Lagrange multipier. As point out by Luenberger [25, section 9], a suffi-
cient condition for the Lagrange multiplier to exists is that the constraint have a property known as
“regularity”. Unfortunately, in the case of the constraint (2.1), regularity is equivalent to complete
reachability [26]. Jonckheere [15] does not use Lagrange multiplier for the dynamic constraint; in-
stead he applies the calculus of variations directly by taking a weak variation about the trajectory of
X, Ex, andu with additional requirement that this trajectory must be impulsive-free. Otherwise, if
the descriptor system (2.1) has impulsive mode, the second term in (2.2) may become infinity. This
explains why Jonckheere [15] assumes the trajectory must be impulsive free.
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Suppose the system (2.1) is impulsive free, we use the same method in [15] to treat this dynamic
constraint. On the other hand, for the static constraint (2.3), we apply the Lagrange multipiler (some-
times callectostate vectgrv € R*! to ajoin it into the cost functional (2.2). Define thiamiltonian

functionas

H(X(t),u(t),A(t),t) = F(x(t),u(t),t) +A(t) THx(t),u(t),1), (2.5)

whereA(t) € R™1, The augmented cost functional is then defined by

I (xo,u, NV 10,tr) = @(x(ts), tf)+V W(X(ts),ts)
+/ (O, = AT F(x(t), u(t),t)] dt.

after using the relationship (2.5). Since the dynamic constraint (2.1) needs to be satisfied and perform
the integration by part to eliminate one arrives at

I (X0, U, A,V to,t5) = D(X(tr),tr) —AT(t1)EX(ts) + AT (to) EX(to)
t .
+/f Hoou A +ATEX] dt (2.6)
t

0

where

D(x(tr),tr) = QX (t1),t5) +VTP(X(t1), ty). (2.7)

In order to solve this minimization problem, we consider the following small perturbations:
X(t) = x(t)+ox(t), u(t) —u(t)+ou(t), tf— ts+dts.

Thefirst andsecond variation®f augmented cost functional 88’ and2J’, respectively, are equal
to the linear and quadratic incrementslindue to the variationsx, du, anddt¢, i.e., the difference
between

J'(Xo, U+ 3U,A, v, to, tf + dtg)| andJ' (xo,u,\, Vv, to, tf).

X=X+0X
Since the final state is governed by the functipnrhencedx(ts + &t ) anddts must also satisfy

the following relationship:
OW(X(ts + Ots) + OX(ts + Otf),tf +0tf) =0 (2.8)
wheredx(ts 4 dts) satisfies the following relation:

O[X(ts)] = %[X(tf +1dts) + TdX(ts + TOt)] . = OX(tf) + X(t)ots (2.9)



with &x¢(ts) denoting the variation of(t) when the time is held fixed and equal tg. Thus the
variations between the final sta@(ts), and final timedts, are linked to each other with the rela-
tionship.

After introducing the Lagrange multiplierto adjoin (2.3) into the augmented cost functiodfal
these two perturbations can be considered to variate independently. Using Leibnizs'rated52)

are computed and represented by

do o
"= &t |—+F ti)T |[=— —ETA
& 6f[dt+ Lf-i_BX(f) {aX }tf
t .
" [6uT6—H+6xT (ET)\+6—H)} dt (2.10)
to ou 0x
2
27 _ . 5 5 (G +F) ox(tr)
= | ()" At 9 (do , \T d[d T
2(R+F)" &8 (®+NTEx) +2F] o
t PH  °H S
+25u(tf>Ta—H - f[esxT 6uT] 0x*  Oxdu *dt (2.11)
ou e Ji g 2y du

Setting to zero the coefficients of the independent variatdaxrenddu in (2.10) with some alge-

braic operations yields the necessary condition for a minimum:

Minimum Principle

. . OH
Lr;wl;&x,u,)\,t), |.e.,w_0 for allt € [to, t¢]
X N Ex(0) = Exo equation of motion fok
\ — _a_':, E"A(tf) = g_j: equation of motion fol (2.12)
o
ET +H(X(tf),u(ts),A(ts),ty) =0 _ N
tf transversality condition

W(x(ts),tr) =0
Another necessary condition for an extremum of a functional to be a minimum was the nonnega-

tiveness of the second variation, i.e.
33 >0 (2.13)

From (2.11), after using the fact thatH* /duf, = 0, the following two matrices should be nonnega-



tive:

22e: i 5 (% +F) >0, (2.14)
5 (% +F) &g @ 0TE) 2 |
and
a;TH; S >0 forallt € [to,tj] (2.15)
G o | |

where®* = ®d(x*(t),t) andF* = F(x*(t),u*(t),t). The detail derivation can be found in [29].

3 Robust Control Theory for Descriptor Systems

In this section, we develop the necessary control design method on the basis of the optimiza-
tion theory developed in section 2. Two types of control problems are considered herein: one is
the linear quadratic optimal control problem and the other is the rabysstate feedback control

problem.

3.1 Control Concepts in Linear Descriptor Systems

Let us consider the descriptor system as given by

Ex = Ax+Biw+Bou, (3.1a)
Z = Cyix+Djou, (3.1b)
y = CoX, (3.1c)

herex € R" is the descriptor variablay € RY is the exogenous inputy € R™ is the control input,

z € RS is the controlled output angd € RP is the measured output. The matiixe R™" has the

rankr < nand the other matrices have appropriate sizes. In real systems, the contrai(inmiten
subjects to a constraint We shall us&) to denote the collection af(t) subject to constrairt, which

is called the admissible control set, and aif) € U is called admissible control input. For descriptor
systems, the admissible control input should be a piecewise sufficiently continuously differentiable
function such that the system (3.1) has consistent solution. The constdten is a vector function

of state, control input, and tinteor Ti(x(t), u(t),t).
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Definition 3.1
(I) A pencil sE — A (or a pair(E,A)) is regular if det(sE — A) is not identically zero.

(I1) For regular pencibE — A, the finite eigenvalues &t — A is said to be théinite dynamic modes
of (E,A). If all the finite dynamic modes are stable, we say tla®\ ) is stable

(111) For regular pencilsE — A, we define two modes for the infinite eigenvalues of $ge- A,
which are the zero eigenvalues of the peicit AA. The infinite eigenvalues corresponding
to the generalized eigenvectorsvith Ev = 0 are thenondynamic modesf (E,A). Suppose
thatEv; = 0, then the infinite eigenvalues associated with the generalized principal vegtors
satisfyingEvg = Av_1 (k > 2) are theampulsive modesf (E,A).

(IV) A pencil (E,A) is admissibléf it is regular and has neither impulsive modes nor unstable finite
modes.

Takabeet. al.[22] proposed a necessary and sufficient algebraic condition (generalized Lyapunov
equation, GLE) for the admissibility of a p4diE,A), which is assumed to lregular:

Lemma 3.2 [22] Suppose that the penciEs- A is regular and that E, A, C) is impulse observable
and finite dynamics detectable, thé®, A) is admissible if and only if there exists a soluti¥nto

Generalized Lyapunov Equation (GLE):

E'™X =XTE >0, (3.2a)
AX +XTA+CTC=0. (3.2b)

When(E,A) is in SVD coordinate system of the form

)
E= . A=
00

then(E,A) is regular and impulsive free if and onlyA; is invertible (see [26] for the proof).

Ax1 A

A1 Az ]

Since the regularity of the plant happens to be destroyed by feedback input, Masubuchi [20]
proposed a matrix inequality condition to state the admissibilityEafA) without assuming that
(E,A) is regular.



Lemma 3.3 ( [20], Lemma 2)A pair (E,A) is admissible if and only if there existse R™" such
that

ET™X =XTE >0, (3.3a)

AX +XTA < 0. (3.3b)

3.2 Bounded Real Lemma

Consider the descriptor systg@from (3.1) without control input and measured output devices:

Ex = Ax+Bw, (3.4a)
z = Cx (3.4b)

where the input-output block diagram of systénis shown as below:

G

We assume that the systenrégjular andimpulse freeand the#4,-norm of systenG is defined by

16l = sup 122 _\ " w ze 0,00 (3.5)
wilz=20 W1l

where the infinite-horizon Lebesque 2-spag), ) is defined by

£5[0,00) = {f £:]0,00) — R" and|[f|» 2 (/Ooof(t)Tf(t)dt>§ < oo}

whence all the functions iri,[0, ) must be stable and converge to zerd asc. The linear descrip-

tor system (3.4) is said to bedissipativeif its #/-norm is less thag.

Theorem 3.4 (Bounded Real Lemma)
Consider the system (3.4). The p&i,A) is admissible and G|l <y if and only if there exists
X € R™" such that

E™X =XTE >0, (3.6a)
1
ATX +XTA4+CTC+ ?XTBBTX =0. (3.6b)



Proof: Suppose there exists a quadratic funcitig) = ETETX1E, X7 > 0, andy > 0 such that for
all t [27],

%V(x) +Z'z—y’Ww'w <0 for all x andw satisfying (3.4). (3.7)

Then,y., is less thary. To show this, we integrate (3.7) from O to arbitrarywith the initial state
x(0) =0, to get

V(x(T)) +/OT (z'z—y?w'w) <0. (3.8)
sinceV (x(T)) > 0, this implies
—= <y, forallw.

Hence,

;
- Tow(t) — ()T
ity VUQT[Z/O (YPw(®)Tw(t) — z(t)Tz(t)) dt > 0, | 39

X, W, z satisfy (3.4) for allT

Thus,||Gl|« < Y if and only if for all T there exists & (x(T) > 0 such thay?||w||3— [|z||3 >V (x(T))
for all w € £,[0,). This corresponds to a minimization problem with the associated cost furiction
defined by

1 rT
Ixw,T) =5 /0 (YPw(®)Tw(t) — z(t)Tz(t)) dt (3.10)

subjected to the dynamic constraint (3.4).

The computation of thé4.-normy., can be divided into two steps:
1. For any givery, compute the minimal value df i.e. J*(x*, wsx),
2. Determinate., which is equal to the smallegtsuch that the condition (3.9) holds.
Substituting (3.4b) into (3.9), it yields
J(X,w,T) = %/OT (yzw(t)Tw(t) —x(t)TCTCx) dt (3.11)

The condition (3.8) for allv leads to the non-negativity of the matrix

o — -C'Cc 0
B IRV



Therefore, we can apply thdinimum Principle to solve this optimization problem. It gives
: 1
—E'"P=P'A+ATP-CTC— ?PTBBTP, ETP=P'E, P(T)=—Xr, (3.12)

and(E,A — y—lzBBTP) is stable and impulsive free. Using the fa¢®) = O, the cost function in (3.11)

can be rewritten as

1T ., d
Iw,T) = é/0 <y2||w—w||§—a(xTETPx))dt

.
_ _%X(T)TETP(T)H%/ y2||w—w*||§dtZ%V(X(T)), Vw
0
where
. 1.7
w (t):_?B P(t)X(t).

SettingP(t) = —X(t) whereX(t) is the solution of following GRDE:

—E™X = XTA+ATX+CTC+ %XTBBTX,

(3.13)
ET™X = XTE>0, X(T)=Xg
with stable and impulsive frege, A + %BTBX), we have the minimum af as
J* (X, W) = %X(T)TETXTX(T) >0 (3.14)
or, equivalently,
T
min / (WO Tw(t) — 2(t)Tz(t)) dt = V (x(T)), (3.15)
weH JO
and the worst case perturbation is then given by
* 1 T *
W (t) = WB X(t)x*(t). (3.16)

For steady-state solution, we Set— o, i.e. X(t) = X, and rewrite (3.13) and (3.16) in termsXfto
get

1
XTA+ATX+CTC+ ?XTBBTX =0, E'™X=XTE>0, (3.17)

and

Wi (t) = y—lstxX*(t), (3.18)
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wherex* is the trajectory of the following stable and impulsive-free closed-loop system

: 1
Ex(t) = (A+ WBBTX)x(t). (3.19)
The solution of GARE (3.17) can then be expressed in terms of the Hamiltonian tdatrix
_ A iBBT
P=Ric(E,H), H= G (3.20)
-C'c -AT
O

We need the following lemma to compute thg-norm:

Lemma 3.5 [23] Suppose thatE,A) is impulse-freeQ = Q', R > 0, and the pencil € 0]+ [A R]

has full row rank on the imaginary axis. Furthermore, suppose that GARI:

ATP+PTA+Q+PTRP<0
Q (3.21)
ETP=PTE
has a solutiorP with ETP = PTE > 0. Under these condition, the Hamiltonian pencil:
E O A R A — —
S - =sE—H (3.22)
0 ET -Q -AT

has no pure imaginary zeros ar(ﬁ, I-_|) is impulse-free.

For our problem, the Hamiltonian functidd is defined by (3.20). The computation @f is

determined by the smallegsuch that the correspondilsﬁ— H has no pure imaginary zeros.

3.3 “#, State Feedback Controller Synthesis

In the following analysis, the measure output equation is ignored. SéltingC andD1, = D for

simplicity, the system from (3.1) is then described by
Ex = Ax+Biw-+Bou (3.23a)
z = Cx+Du (3.23b)
When no control input is introduced, the system (3.23) becomes

Ex = Ax +Biw
G: ! (3.24)

z=Cx
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hereG represents the uncontrolled system wjtj, > y||w||,. We can test the dissipativity of this
system by using bounded real lemma (Theorem 3.4).
If it is not y-dissipative, we may adjust the system properties via a designed contrafethe

form
u=—Kx (3.25)

such that the closed loop systemyislissipative, and this controlled system with||, < y||w||, is

shown as the following block diagram:

w

G

u X
K

The purpose of this subsection is devoted to design the contrd{ Ieng3.25) such that the closed

loop system ig-dissipative, i.e. the exogenous inputind the system outpatsatisfy the following

relationship:
T T
/ 2(0)Tz(t)dt < \? / w(t) Tw(t)dt (3.26)
0 0
which implies the following inequality:
T
minmax/ Z—vPw(t)Tw(t))dt <0
u w Jo
or, equivalently,
T
maxmin/ z—v2w(t)Tw(t))dt >0 (3.27)
u w Jo

Thus, the#,, control problem is a two-player game theory. One playev standing for the effect
of the environment; the other playerusstanding for the wisdom of the designer to overcome the

defects or drawbacks.
Theorem 3.6 Given the system (3.23), suppose that Assumption 2 holdX &edhe solution of the
GARE

—E™X = XT[A+By(D'D)IDTC]+[A+B»(DD)1DTC]™X
+CT(1 —D(D'D)~DT)C + xT(y—12|31|3{ —By(D'D)"1B])X (3.28)
ET™X = XTE>D0,
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such that(E,A — B2(D'D)~1(BJX +DTC)) are stable and impulse free. Then an state feedback

control law is given by
U=—-KwX, Ke=(D'D)"}D'C+B]X) (3.29)
such that the closed-loop system

Ex = (A—B2Kw)X+Biw (3.30a)
z = (C—DKa)X (3.30b)

is y-dissipative.
Proof: Define the cost function for this optimization problem as
Juw) = % /O T PO Tw(t) — 20)Tz(t))dt
— %/OT (Y"w'w — (Cx+Du)T(Cx + Du)) dt (3.31)

after using the relation (3.23b) and the corresponding Hamiltonian funigtisrgiven by

1

2
1 1 1

— Eyszw — éxTCTCx — EuTDTDu —u"DTCx +AT(AX 4 Byw + Byu)

1
H — QVZWTW — Z(Cx+Du)T(Cx+Du) + AT (AX + Byw + Byu)

(3.32)

The optimal control strategy* and the worst case disturbangé are computed according % =0

and 24 =0, respectively, in which

‘3—'3 —-D'Du—D'Cx+BIA=0
implies
u*=(D'D)"*(BJA - D'Cx) (3.33)
and
H
g—w —YwW+BJA=0
implies
* 1 T
W= —?le (3.34)
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Putting (3.33) and (3.34) back into (3.32) yields

H(x, A\ u*,w t) = %V—:LZ)\TBlBI)\—%XTCTCX

~(A\"B,—x"C"D)(D"D)"'D"Cx

—%()\TBZ —x'C™D)(D'D)"*D"D(DD)"}(BJA —D'Cx)
ATAX — SATBBTA+ATB (D'D)"Y(BIA—DTCx)
yz 1D1 2 2
1

= —ZXTCTC[I —D(D'D)IDT]Cx
~ 1

+AT[Bo(D'D)!B] — ?BlBI))\

+AT[A+By(D'D)"ID'Cx (3.35)
Let P(t) be the solution of the following GRDE:
—E™P = PT[A+B,(D'D)"ID'C]+[A+B,(D'D)"D'C]TP
~CT(1-D(D'D)"D")C + PT(%BlBI —By(D'D)"1B])P (3.36)
E'TP = P'E
such that E,A — 1B;B]P+B,(D'D)~}(BJP— D'C)) is stable and impulsive free. From (3.23a)

V2
and (3.36), we have

%XTETPX = X'E'Px+Xx"ETP+x"ETPx
1
= X'CTCx+x"[2P"Byw + ?BlBIPx]

+x"[2P"B,u—2C™D(D'D)BJP—-C'D(D'D) !D'C)x

(3.37)
Substituting (3.37) into (3.31), it yields
J(x,w) = %/OT (y2||w_w*||§ —(u—u")TD"D(u—u*)— %(XTETPX)) dt
= XTETPTx [ (w3 D u) B e
(3.38)
whereu* andw* are
u*(t) = (D'D) *(BJP—-D'C) x(t) (3.39)
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and
* 1 T
wi(t) = —?BlPx(t), (3.40)

respectively. Comparing (3.39) and (3.40) with (3.33) and (3.34), respectively, the following relation-
ship holds for optimal values of andx*, i.e.,

A (t) = Px*(t) (3.41)
Thus, the optimal value of the cost function is given by
J(u,w*) = maxminJ(u,w) = —%XTETP('[)X >0 (3.42)
which impliesP(t) < 0. SettingX(t) = —P(t), it follows

—E™X = XT[A+By(DD)"IDTC]+[A+By(D'D)"1DTC]TX
+CT(1 -D(D'D)~DT)C + xT(y—lealBI —By(D'D)"1B])X (3.43)
ETX = XTE>O0,

such thatE, A + %BlBIX —By(DD)"}(B]X +DTC)) is stable and impulsive free. And the optimal

cost function becomes
J*(u*, W) = %x(T)TETX(T)x(T) >0 (3.44)

i.e. the closed loop system (3.24)yislissipative.
Next, letT — oo, we haveX(t) — X andX = 0 ThusX is the steady state solution of (3.43) which
yields

A+B,(D'D)"IDTCc 1(B,BT-B,(D'D)1BJ
X:RiC(E,H), H— 2( ) yz( 154 2( ) 2)

(3.45)
—CT(1-D(D'D)"D")C —(A+By(D'D)DTC)T
The optimal control* and the worst case disturbangé are given by
u*=(D'D)"}(DTC+BIX)x*

and

1
W= ?BIXX*
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respectively, wherg* is the optimal trajectory of the closed-loop system from (3.23) and (3.39) after
substitutingu = u* andw = w*. When there exists @ sayY., such thatl(u*,w*) = 0, then the

saddle point condition
J(u,w*) < J(u*,w*) =0<J(u",w)

is satisfied. This type of game is called zero-sum differential game which asserts the best strategies
are used by both players. The corresponding controller is called the optimal controller. On the other

hand, the controller is called suboptimal controller. O

4 Example: Vibration Suppression of Smart Beam-Plates

In order to study the effect on controlling the undesirable vibration phenomena, we consider a
laminated beam-plate structure bonded with a pair of sensor and actuator made of PVDF materials
under the influence of a impact for€¥t) acting onx = L/2 att = 0. In addition, both ends of this
structure are hinged with rotational restraints with spring consténts K; = 1000. The schematic
diagram for the structure is shown in Fig. 1. The material properties are listed in Table 4 [28]. The

mass per unit lengthand effective bending stiffnegsare 00773998 and 2122815, respectively.

Ko K1

| |
| L g

Figure 1: The configuration of a hinged beam-plate with rotational restraints.

After applying the technique from [29, Chapter 4], the descriptor model of this beam-plate struc-
ture is then given by

Ex(t) = Ax(t)+B1P(t) 4+ BaVa(t) (4.1a)
z(t) = Cx(b) (4.1b)
(4.1¢)
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Table 1: Material properties for a typical smart beam-plate

I. PVDF material

piezoelectric strain constant ds1

piezoelectric stress constant 031

electro-mechanical coupling factor ks

23.0 x 10712 m/Volt
2160x 103 Volt-m/N
0.12

dielectric constant Kzt 120
Young'’s Modulus Eis 64.5 x 10° N /n?
density Ps,Pa 18000 Kg/m?
Kelvin-Voigt damping CpsCpa 2.010x107°sec N/m?
thickness ts,ta 0.0254cm
width W, W, 2.03cm

[l. Laminated material
Young’s modulus Ep 73.0x 10° N/n?
density Pb 12400 Kg/m?
Kelvin-Voigt damping Cbb 1.378x 107° sec N/n?
viscous-damping c(t) 0.0 sec N/n?
thickness th 0.16cm
width W 2.03cm
length L 284cm
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whereP(t) andV, denote the impact force and input voltage of piezo-actuator. We don’t include the
sensor equation here. Some typical values of the corresponding system niatAcés;, B,, andC
with uniform sensor and actuator are shown in Table 2 for whken5 for illustration.

The state feedback controller is designed by using Theorem 3.6. Firstly, we choose the value for
yto be 1.0. If there is no solutiod exist for the GARE (3.43), then we may increase the valug;of
otherwise, we decrease this value until a solution is found. Fig. 2 shows a satisfactory control effect

to suppress unacceptable vibration for= 6.

(a) before control (b) after control
(Yoo = 7.4815,000 = 729) (Yo = 0.1804,u = 984)

Figure 2: Vibration suppression effect on a hinged beam-plate under the influence of concentrated
load 55(t)d(x—L/2)

The corresponding control gain matrix is given by

K=[10001 7560 9998 3303 6654 6283 8497 6857 8782 684 5608 6624 7264 |1985

Simultaneously, the system’&, norm is reduced from.8415 to 01804 after introducing control
and the corresponding frequen@y for the occurrence of thét, norm is also moved from 729 to a
higher value 984. The result shows that the state feedback control theory developed in this study is

effective and adequate.

5 Conclusions

This paper has presented t#i state feedback control theory to treat the dynamic response and
control of descriptor systems. The one-player and two-player game theories for descriptor systems
have been derived. Linear state-feedbagkcontrol theory has been conducted by using bounded real
lemma. On the basis of theoretical analysis without experiment, simulation results presented in the
paper suggest that this approach for smart structure control is effective. And we also recognized that
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the development of a good and reliable software to solve the generalized Riccati differential equation
and algebraic Riccati equation is a key issue to the successful applications of control theories for

descriptor systems to practical problems.
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