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Abstract

This paper deals with the balanced realization of linear time invariant systems using an one parameter
optimization technique through a variational approach . The Hankel norm is established first. As balanced
coordinate vectors are parallel to Hankel singular vectors, a new algorithm for balanced realization by a
newly defined balanced map is obtained without performing the Cholesky factorization to the controllabil-
ity or observability gramians. A simple example is presented for illustrative purposes.
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1 Introduction

The design of a controller for a high-order plant through numerical procedures such as finite-
element methods is usually difficult and expensive. Therefore, to find a suitable approximate
design process for controlling high-order models become a crucial issue. Hankel norm approxi-
mation method is one of the popular approaches for this purpose. Hankel norm model reduction
in state-space as well as frequency-domain approaches have been addressed in many papers, e.g.
[2, 5, 6], [8-9]. The key point of the Hankel approximation is to establish the Hankel norm by di-
lating the system to be all-pass in order to obtain a balanced realization. The idea of the balancing
was first proposed by Moore[7]. Then Glover[3] introduced a theory for the balanced realization
and optimal Hankel approximation of multivariable system, in which the Cholesky factorization of
the controllability gramian is used. In this paper, we define a balanced state map, and develop an
algorithm accordingly for constructing a transformation matrix to perform the balanced realization
without using the Cholesky factorization of controllability or observability functions.
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Firstly, we review the algorithm of Glover[3]. After defining the system’s Hankel operator,
and the controllability and observability functions, the Hankel norm of the system is computed by
solving a minimization problem for the full time domain on the basis of a variational principle.
The separation property at the present time to split the time domain into past and future time
ranges is not involved. The continuity of the Lagrange multiplier at the current time gives the
same relationship between the Hankel singular value and Hankel singular vector in the Hankel
operator approach. Thereafter, we derive the transformation matrix and establish a new algorithm
for the balanced realization. A simple example of performing the balanced realization is presented
for illustrating the new computational algorithm.

2 Background

In this section, we review some basic properties related to the balancing of linear system. Let
G be a stable system governed by a differential equation of the form:

G X(t) = Ax(t)+Bu(t), x(0)=xg (1.a)

yt) = Cxt) (1.b)
with t € (—oo, +), andA € R™", B R™™M, andC € R™" are matrices of continuous real value

functions in whichReA;(A) < 0, whereA;(A) is thei-th eigenvalue ofA, andR is the set of all
real numbers.

The triple of matricegA,B,C) is called a realization of the system. If this system is both
controllable and observable, then the ga&iyB) is controllable andC, A) is observable. The triple
(A,B,C) is then called minimal realization. It is usually convenient to assume that the s@tem
is relaxed in the infinitely remote pass, i.tdirpmx(t) = 0. Hence, there exists a certain control

functionu € L?((—,0]) which can drive the system from rest to the current stgte
0
X0 = / e ABu(1) dt 2

2.1 Hankel operators, Hankel singular values and Hankel norm

LetL? andL? denotel?([0,+)) andL?((—c,0]), respectively. The Hankel operatiog of the
systemG is defined as

o L%((—w,0]) = L*([0,0)) @ ury

where
A 0
y(t) £ (Fou)(t) = CeM [ e A BU(T) dt 3)

0
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Thus, the Hankel operator is an operator that maps the pass control input functidnspace
into the future output response function Ioil The adjoint operator of the Hankel operaltgy is
defined as

rg: L3([0,@)) — L%((~,0)) :y—u

and
ut) & (rey) (v = [ BT HIcTy(o) dr @

inwhich g is related td g by
<lFgyu>_2=<ylcu >12 (5)

where< -,- >, denotes the inner product on Hilbert spakewhich may beLi orL?, and the
superscrip denotes transpose of the matrix.
Let (u,v) be a Hilbert Schmidt pair corresponding to the Hankel singular valoEl" g, then

Mcu=ov, rev=ou (6)

whereu is the left Hankel singular vector, ands the right Hankel singular vector. The singular
value and vector are computed by using the following lemma:

Lemma 2.1 Suppose that there are two positive matri€and Q for the system’s controllabil-
ity and observability gramians, respectively, which are the solutions of the following Lyapunov
equations:

AP+PAT+BBT = 0 (7.a)
ATQ+QA+C'C = 0 (7.b)

Then we have
(1) PQx = 020, 2)u=0"2BTe A"'Qx, (3)v=0"’Ce'x.
Proof: By using equations (2), (3) and (4), and knowing thaf cu = o2u, we have
rsfeu=B"e*'Qx ®)
where .
Q- /0 ACTCe dr ©)
is the solution of (7.b). Thus, the left Hankel singular value is
ut) = o-28"e A Qx (10)

The substitution ofi from (10) into (2) leads to

X =0 2PQx
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where 0
P— / e~ BB e AT dr (11)
is the solution of (7.a). Hence
PQx = 0%%o (12)
Similarly, since
Felsv =0 =Cé'xg
so the right Hankel singular vector has the form
v(t) = 07 2Celxg (13)

O

We remark that for a stable systeéBnthe matrixPQ hasn positive eigenvalues af? with each
corresponding eigenvectgg. Hence, the singular values BQ areg,,0,...,0, represented in
the order of decreasing magnitude by a diagonal matexdiag(o1,02,--,0p).

Definition 2.2 TheHankel normof the systen® is defined as

LT

1G]l £ sup -
w2 (Ul 2
u£0

(14)

wheresupdenotes the supremum, and

1

ww%ﬁwmwﬁméwwmwf

2.2 Glover Algorithm for balanced realization

LetT be aninvertible matrix such that the new staigrelated to the original staseby x(t) = T x(t).
Then the systerts becomes

Xt) = AX{t)+Bu(t) (15.a)
yt) = CXt) (15.b)

whereA=TAT 1, B=TBandC=CT ..
The tripIe(A_\, BT,(S) is said to be @alanced realizationf the solutions of the following two
Lyapunov equations:

AP+PAT+BB' =0, A'Q+QA+C'C=0 (16)

satisfy the condition® = Q = =.
The Glover algorithm[3] for balanced realization by using the Cholesky factorizatighief
summarized as follows:
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(1) ComputeP andQ of the systenG.
(2) Perform Cholesky factorization €j to obtainQ%.
(3) Computes; andy; such thab?y; = QZPQzv;.

(4) Form the matriy¥ = [vi V2 --- vy which satisfiesv>? = Q% PQ%V, calculate the
transformation matrix = Z‘%VTQ%.

5) Compute the balanced realizatiph B,C) usingA=TAT-!, B=TB, C=CT L
p g

Similar procedures using instead ofQ can be found in Green and Limebeer [4].

3 Main Results

We firstly compute the Hankel norm using an one parameter optimization technique via a
variational approach. Then, we establish a new algorithm to perform the balancing for the system
G.

3.1 Hankel norm computation via variational approach

Let the collection of all € L? satisfying (2) be denoted hy, such that

/jo e AMBu(t)dt = xo }

Since for a controllable and observable systepthe Hankel norm defined by Definition 2.2 can
be re-expressed as

UOZ{UGLZ

IGllH = sup u(xo) (1)
XpERN
where Iyl
Y L2
= max—— 2
H(XO) UEUO ||U|||_g ( )

The value of||G||y can be computed according to equations (1) and (2).
For a giverxg, suppose is an upper bound qi(xp), then

(o) <V ifandonlyif [yllf, —y*|lullfz <0 YueUo

Lety, be the maximal value gi(xg), then there exists an optimal output functypnand control
input functionu, such that

®3)
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Therefore, the computation @afXp) is equivalent to solve a minimal energy problem:

min{% [ 3 [Ty} <o “

which can be solved by a variational method.

Let the Hamiltonian function be
YTy T i _
H(xUA) = Su'u+ A" (Ax+Bu) !f t € (—o0,0] )
AT(Ax) — 2xXTCTCx  if te[0,)

whereA(t) is the vectors of the Lagrange multipliers which must be continuous and satisfy the
conditionsA(—e) = A(0) = 0. The sufficient condition for this minimal energy problem given in
[1] requires that the following matrix
PH  PH
B

oxou  ax2
be semipositive along the optimal trajectdmy (t), u.(t),A.(t)), which is automatically satisfied

here. Since dH oH OH. oM 3H
EZE“F& +67u+ﬁ)\ 0 (6)

along the optimal trajectory, hence
H (X0, U, M) = H (X (—00), U (—00), Ay (—)) = H (X, (), U (0) A () = 0. (7)
The necessary condition for this extremal problem is as follows:
(1) te(—»,0: Smce"” = 0leads toy?u+B"A = 0. The optimal control inputi, becomes
—B"A, /yf. (8)
The corresponding adjoint equatlorw,s_ —9H — _AT),. Hence
() = e*ATtA*(O) 9)

which satisfies the requiremekt(—) = 0 andA..(0) is a constant to be determined. Sub-
stitution of equation (9) into equation (8) yields(t) = —éBTe‘ATt)\*(O). By equation (2),
it finally follows that

0 1 T
f e B~ 5BTe A (0)dr

X = —
_ 1[0 appT.ATe _ 1
- -3 [ [ Bl A(0) = —PL(O (10)

whereP is given in equation (11). Thus the costate vector at current time.(i8) =
—y?P~1xo and the minimal control law becomes

u,(t) = BTe A"tp1x (11)
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(2) t e ([0,0): Since there is no control on the input of the system, the optimal control law is
u,(t) = 0. The solution of the state equationxigt) = &\'xp, and the output is

y.(t) = Cé'xo (12)

The corresponding adjoint equation is
oH

A= —— = —ATA, +CT 1
ax +CTCx. (13)

Integration of equation (13) leads to
At =e A {)\*(0) + /O t A TICTCx, (1) dT} —e At {7\*(0) + fo "ATCTCE dig
SinceA, () = 0, we must have
A(0)+ /O " ATCTCE dixg = 0
or equivalently
A (0) = —Qxo (14)
By equations (10) and (14), we have

VP o = Qx (15)

which is the continuity condition of the costate veckoft) att = 0. Furthermore, equation (15)
is equivalent tdQx = y2Xo. By theLemma 2.1they, is the Hankel singular value of the system.
And, the vectorau, andy, given in (11) and (12) are parallel to the Hankel singular vectors.
Therefore, we can compute the Hankel singular values and the associated Hankel singular vectors.
The present idea provides a new way to compute the Hankel norm for more complicated nonlinear
systems or certain type of linear systems with input/feedthrough delays.

The minimum energy required fare Ug to transfer the state(t) from x(—o) = 0to x(0) =X
is given by

0 0
||UHEZ = / U, (t)TU* (t)dt — / Xgp—le—AtBBTe_ATt P—lxo dt = Xgp—lxo (16)
And, the free output response energy is
iz = [y 07 0dt= [ e icTed o dt= x5 an

Substitution of equations (16) and (17) into equation (3) gi¥éso) = X\ Qxo/X)P~1xo. There-
fore, from equation (1) the Hankel norifs||y is computed as

G/ = sup () = sup 0P 0 _ g 2P0

XoE€RN xcR" XoP~1Xo xR XgP71Xo

wherexg is chosen to be thieth eigenvector of the matriRQ. Sinceo; is the maximal singular

value of the matriXPQ, thus the Hankel norm of linear systeiis equal to the largest Hankel

singular value, i.e}|G||4 = Omax(PQ).

= maxo? = g2
|
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3.2 Balanced realization

Let 4 € R" be the eigenvector dPQ corresponding tasj, i.e. 0?4 = PQ( and /[P~ = 1.
DefiningL=[ ¢1 ¢» --- ¢, ] € R™" we have the following lemma:

Lemma 3.1 The following identities hold:
@QLPIL=1, @LWPLT=I, BLZ2=PQL 4)L"QL=3?
wherel denotes am x n identity matrix.

Proof: By using the definition oL, these identities can be verified directly. O

Since{/; }{ forms a basis foR", we can express the staigin terms of this basis as
Xo = [Xo1X02+-Xon] " = 01f1+ A2l + -+ Unly = Lo

with scalara; for i ranging from1 to n. After some algebraic operations, we obtaJ;rP‘lxo =
aTLTP1La = aTa andx]Qx = aLTQLa = a"=2a. Suppose that the triplg, B,C) is the bal-
anced realization of the syste® andx(t) is the corresponding balanced state which is partitioned

as

X=[% % - %l

then by satisfying equation (16), we must hay@)TP~x(0) = x(0)7=1x(0) andx(0)"Qx(0) =
x(0)T=x(0). It follows that
X0) =Z2a =32L 1 (18)

with corresponding componemg0) = ,/0;a;. And, we obtain

o b _ iy
Xo—X(O)l\/0—1+X(0)2\/0—2+ +X(O)n\/0—n

Therefore, the basis of the balanced representation is giveldy/c;}7, which is parallel to

the basis{¢; }]. This shows that the unit base vector of the balanced realization is parallel to the

Hankel singular vector. Hence, we can define the balanced map for the system

Definition 3.2 The state transformation matriX is a balanced majif it satisfiesT¢;/\/0; =
g,i=1,2...,nwhereg = [Bil,---,{)in]T is thei-th vector of the canonical basis &" and
&ij is the Kronecker delta. The stalex is the balanced statand its corresponding realization
(TAT-L, TB, CT1) is thebalanced realization

We can perform the balanced realization of the sysB&hy using the following theorem:
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Theorem 3.3 Suppose the syste@is stable, controllable and observable, afh B,C) is min-
imal, but is not a balanced realization, th¢A, B,C) = (TAT%, TB, CT 1) is a balanced real-
ization with

T=32Lt (19)
And, the corresponding controllability and observability gramians are diagonaﬁi.:e.Q_: >
Proof: Since
T 5 b In _ b by
Vo oz \ow VoL V& o
= I byl =) (20)

it follows thatT¢;/,/0i = . Hence, byDefinition 3.2 the matrixT is a balanced map is a
balanced state ar(d:, I?T,C?) is the balanced representation. Substituing TAT%, B= TBand
C=CT linto equation (16), we have
TAT P+PT TATTT+TBB'TT = 0 (21.a)
T TATTTQ+QTAT '+T'C’™cT ! = o (21.b)
The multiplication of equation (6) by certain functionsTofjives

TAPT +TPAT +TBB'TT = 0 (22.a)

T TATQT 14T TQAT 1+T7'Cc'cTt = o (22.b)

from which we obtairP = TPTT andQ = T-TQT L. Using the identities given ihemma 3.1
we have

P=3:2L-PL 752 =5 and Q=3:LTQLS Z=73. (23)

O

It is noted that the idea presentedDefinition 3.2andTheorem 3.Zan be extended to quali-
tatively discuss the balancing of the linear time-invariant system in behavioral approach.

The new computation algorithm developed in the present study for a balanced realization is
summarized as follows:
The New Algorithm:

(1) ComputeP andQ of the systenG.
(2) Computes; andy; such that?v; = PQy.

(3) Determine the eigenvectofswhich satisfy the requiremedf P~1¢; = 1 from
Vi

/TPy

b =
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(4) Form the matrice& andL, calculate the transformation matixasT = s3L-L,
(5) The balanced realizatid, B,C) is determined wittA = TAT 1, B=TBandC =CT 1,

The advantage of the present new algorithm over Glover Algorithm [3] is that there is no need to
perform the Cholesky factorization for the matfxin order to obtain the balanced realization.
The matrixL here is equal t@%VZ as in the Glover Algorithm.

4 A Numerical Example

An example for the following simple dynamical system is considered:

: 0o 1 0
X = [ 5 _3 X+ 1 u (1.a)
y = [1 o}x (1.b)

Comparing with the standard form of equation (1), the matrices

0o 1

, B= 0
-2 -3 1
Substituting equation (2) into equations (7.a) and (7.b), the controllability granéand observ-
ability gramianQ are obtained as follows:

1 0] l
P—= 12 7Q: 1
kR %

By Lemma 2.1the Hankel singular values;j, and the corresponding Hankel singular vectérs,
satisfying the conditione?/; = PQ¥;, and/T P~1¢; = 1 are found to be

A— : cz[l o] @)

H
NI

)

I[N

01 =0.296796 0, =0.0467961 /1=
0.150663 0.379430

0.268298] [ —0.106535]
5 2=

Hence, by the present new Algorithm

| _ | 0268298 0106535 s_ | 0296796 0
| 01507663 (879430 |° 0 0.0467961

The transformation matriX given by (19) becomes

T_gi 1_| —175399 0492479
B | —0.276553 0492479
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Sincex = Tx, the new realization of the triplgA, B,C) with A= TAT1,B=TB, andC =CT !
are found to be

C= [ 0.492479 —0.492479

i_ | —040859 097142 5_ | 0492479
| —0.97143 —259141 | | 0492479

After substituting the matrices, B, andC into equations (7.a) and (7.b), we obtain

=2z

I
Q|

5
0 00467961

0.296796 0 ]

Thus, the tripIe(K,B_, ) is a balanced representation. As a result, the balanced state equations
become

o —0.40859 097142 < 0.492479
—0.97143 —-2.59141 0.492479

{ 0.492479 —0.492479} X

<
|

5 Conclusions

A new algorithm for performing balanced realization of linear time-invariant systems has been
established. Firstly, we have developed the Hankel norm for computational purpose as a minimal
energy problem. A Hamiltonian function defined by the past control input function and future
output response is used for solving the problem. The continuity condition of the Lagrange mul-
tiplier at the current time leads to the same relationship between the Hankel singular values and
Hankel singular vectors as the result arrived on the basis of the Hankel operator. Consequently, the
Hankel norm of the system is solved as an one parameter optimization problem. Thereafter, the
balancing process is discussed previously. A new algorithm for performing balanced realization
without using the Cholesky factorization of the controllability or observability gramians has been
established. The simplification of the present algorithm over the existing Glover algorithm is made
because of the fact that the bases of the balanced coordinate are found to be parallel to the Hankel
singular vectors. The present approach can be extended without much difficulty to nonlinear and
delay systems while it is difficult to derive an explicit form using the Hankel operator.

References

[1] M. Athans and P. L. FaltlQptimal Contro] McGraw-Hill, New York, 1966.



94

[2] D.F. Enns, “Model Reduction with Balanced Realizations: An Error Bound and A Frequency
weighted GeneralizationProc. 23rd IEEE CDCNew York, 1984, pp. 127-132.

[3] K. Glover, “All Optimal Hankel-Norm Approximation of Linear Multivariable System and
Their L”-error Bounds,Int. J. Contr, vol. 39, pp. 1115-1193, 1984.

[4] M. Green and D. J. N. LimebeeLinear Robust ContrglPrentice-Hall Internatinal, Inc.,
New Jersey, 1995.

[5] S.Y.KungandD.W.Lin, “Optimal Hankel-Norm Model Reduction: Multivariable System,”
IEEE Trans. Automat. Contiol. AC-26, pp. 832-852, 1981.

[6] S.Y.Kungand D. W. Lin, “A State-Space Formulation for: Optimal Hankel-Norm Approx-
imations,”|EEE Trans. Automat. Confwol. AC-26, pp. 942-946, 1981.

[7] B. C. Moore, “Principal Component Analysis in Linear Systems: Controllability, Observ-
ability and Model Reduction JEEE Trans. Automat. Contwol. AC-26, pp. 17-32, 1981.

[8] R.Oberand D. McFarlane, “Balanced Canonical Forms for Minimal Systems: A Normalized
Comprime Factor Approachl’inear Algebra and its Applicationpp. 23-64, 1989.

[9] A.J. Van der Schaft and L. F. Oeloff, “Model Reduction of Linear Conservative Mechanical
Systems,1EEE Trans. Automat. Contiol. AC-35, pp. 729-733, 1990.

[10] C. D. Yang and F. B. Yeh, "An Extension of A-A-K Hankel Approximation Theorem by
Using State-Space Formulation,”roc. of the 1993 ACCSan Francisco, 1993.

[11] C.D. Yang and F. B. Yeh, "One-Step Extension Approach to Optimal Hankel-Norm Approx-
imation andH-optimization Problems,JEEE Trans. Automat. Confrvol. AC-38, No. 6,
pp. 674-688, 1993.



95

AR PE TR AR M M (b B
RS R

=

A SCHE L DA Jay B G L 22 R A A L DU B M AR M P (LR B o 9T » B M
HHankel L 515 o DR E I BRI B AR T fTHankely B a) & » Atk RE JSEE TF
B > A HRDAE R LR LR BB > DARH I E AR 2R e B ) 22 R A P el B A e
F7Choleskys iz ik o SCHL I IR LTSI Z 5T SR -

Mg © HankeEll » SRVEIERFERM » BmMaR - 2UERE(L - THLEE




