Tunghai Science Vol. 3: 927 9
July, 2001

Global Stability for a Predator-Prey System with
Predator Self-Limitation
Chao-Pao Ho Shy-Tyng Huang

Abstract

The aim of this paper is to study the dynamical behavior in a class of predator-prey system with
predator self-limitation. We present some global stability results obtained from Dulac’s criterion and
Poincae-Bendixson theorem, comparison method, and stable limit cycle analysis for the predator-prey
systems with predator self-limitation in the first quadrant.
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theorem, comparison method, limit cycle

1 Introduction

Predator-prey models have been studied for a long time. Many biologists believe that if the
unique positive equilibrium point of a predator-prey system is locally asymptotically stable, then
it is globally asymptotically stable. However, this is not always true. In [14], Josef found that
a unique positive locally asymptotically stable equilibrium point has at least one limit cycle sur-
rounding the equilibrium point under suitable condition. Thus many mathematicians try to use
some well-known methods to find the conditions for global stability for the equilibrium point of
predator-prey systems. Firstly, they construct a Lyapunov function and establish the global stabil-
ity by LaSalle’s invariance principle (See [2,8,9,11]). Secondly, they employ the Dulac’s criterion
to eliminate the existence of the periodic solution and prove the global stability by Peincar
Bendixson theorem (See [10,12,15,19]). Thirdly, comparison method is used to prove the global
stability for some predator-prey systems (See [5,15,17]). Furthermore, there is a method which
people can compares the trajectory of the system with an auxiliary system which is obtained by
"mirror” reflection (See [6,15]). Finally, there still exists a method to analyze the global stability
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of the predator-prey systems. It's stable limit cycle analysis (See [10,12,13,22,23]). However,
in these models which have been discussed, the assumptions for predator is that the populations
will infinitely increase if the prey populations is large enough. From the viewpoint of the biology,
this is false. Hence we are trying to find the conditions of predator which is more appropriating
biology.

At first, in the Lotka-Volterra model, the predator zero isocline is vertical. That is, the same
number of prey is assumed to be sufficient to maintain any number of predators (See Figure 1
curve A). This assumption can also be found in [7,8,20,21]. But this is most unlikely since larger
populations of predator require larger populations of prey to maintain them (See Figure 1 curve
B). This situation is discussed in [12] and [19]. Besides, mutual interference will also reduce indi-
vidual consumption rate (See Figure 1 curve C). Recently, many biologists discover that predator
populations might be influenced by the prey populations and predator’s self-limitation. That is,
even if predators have excess food, their populations are still limited by availability of some other
resource: nesting sites perhaps, or safe refuges of their own. This will put an upper limit on the
predator population irrespective of prey numbers (See Figure 1 curve D).

In order to explain the stabilizing effects of self-limitation in predator-prey interactions, we
give an example to state this. In 1983, Batzli [3] discovered that in the Arctic, the ground squirrels
have populations that remain remarkably constant from year to year. This is because the ground
squirrels are strongly self-limitation by their aggressive territorial defence of burrows used for
breeding and hibernating.

Next, we give the instance to describe the influence of the self-limitation. In 1972, Watson
and Moss [18] discuss the red grouseagopus lagopus scoticuseeding on heathe@alluna
vulgaris) on Scottish moorlands (See also Caughley and Lawton [4], 1981). They find that heather
comprises at least 90% of red grouse’s diet over most of the year, and it is the dominant higher
plant on the moors where the grouse live. The grouse themselves are strongly territorial, with the
size of the spring breeding population being determined by the number of territories established
by cocks in the previous autumn. And the larger the self-limitation is, the less fluctuating the
populations of the predator is (See Figure 2 curve (i) (ii) and (iii)).

The main purpose of this paper is to establish the global stability of the predator-prey model
with self-limitation predator.

In section 2, we introduce the primary model (2.1) with some assumptions and prove that all
solutions of the system (2.1) are positive and bounded.

In section 3, we use the four renowned methods, such as Dulac’s criterion, Lyapunov function,
comparison method, and stable limit cycle analysis, to discuss the global stability of the model
(3.2).
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Figure 1: curves A to D are predator zero isoclines of increasing complexity.

2 The Models

Consider the following predator-prey system

X = xg(x)—yp(x)
2.1) y = y[é—sq(yx)}

x(0)>0 , y0)>0

where- = d/dt, x andy represent the prey population and the predator population, respectively.
Because all we want to discuss is biological population, we only consider the first quadrant in the
x —yplane. The following assumptions are consistent with the system (2.1).

(A1) g € C([0,»),R); g(0) > 0, and there existi such tha{x—K)g(x) < 0for x# K. Firstly,
in the assumption (A1X is defined as the prey environmental carrying capacity. Secondly, the
specific growth rateg(x), governs the growth of the prey in the absence of predators. Several
forms ofg(x) have been catalogued in [1] or [2]. For examplg) =r[1— (x/K)¢]; 0<c <1,
andg(x) = r(K —x)/(K +¢ex). We remark that a new feature of such predator-prey models is
incorporated into the case whgf{0) > 0. This represents a prey population which can exhibit an
accelerated population specific growth rate for intermediate values of population as a strategy to
avoid extinction.

(A2) p € C([0,»),R); p(0) = 0andp'(x) > O for all x > 0.
The functional response of the predatopfx), has been discussed in the literature. Several forms
of p(x) can be found in [16] or [17]. In some modgtéx) is assumed unbounded, for example,
p(x) = mxin the Lotka-Volterra model or in the Holling-type | model. In othgx(x) is assumed
bounded, for instancey(x) = mx/(a+x), p(x) = mx¥/(a+x?), p(x) =mx,0< c < 1, or p(x) =
m(1—e ).
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Figure 2: This prey isocline combined with predator zero isoclines with increasing levels of self-
limitation. (x*,y*) is the equilibrium point. (See [4] and [18])



13

(A3) g € CY(]0,),R); q(0) = 0, ¢/ (x) > 0, ¥x > 0.
The predator environmental carrying capacity is influenced by the density of the preyxsain
[9], a(x) = xis a special case. Besides, by the Figure 1, the curve B is a sloping ling(wjth: X,
the curve C is a curve with(x) increasing infinitely without any limitation, and the curve D is a
curve withlimy_.» g(X) = g» > 0 whereq(x) can't increase infinitely.

Clearly,Ex = (K,0) is an equilibrium point of the system (2.1). As we are interested in the
stability of the unique positive equilibrium point in the first quadrant for the system (2.1), we need
the following assumption:

(A4) There exists a unique positive equilibrium poiat = (x*,y*) such thatx*g(x*) —
y'p(x*) = 0andd—By*/q(x") = 0.

To analyze the behavior of the system (2.1), firstly, we discuss the local behavior of the equi-
librium points in the system (2.1) by the Hartman-Grobman Theorem. Now let us study the local
behavior of the system (2.1) at equilibrium poifis andE*. The Jacobian matrix of the system
(2.1) takes the form

lg(X)+Xd(X)—yrf(X) —p(x) ]

= > 9(¥) on Y
Wz ° P
At Ex
L [Q(KHKQ’(K) p(K)]
. -
0 0
_ | Kd(K) —p(K)
0 0

From (A1),Kd'(K) < 0. ThereforedetJ«) = 0Kd'(K) < 0. Hence the equilibrium poir is a
saddle point. Let's find out the stable manifold. We consider one orbit of the system (2.1) along
x-axis. AsO < x < K, by the system (2.1) and (A1},is positive. Thus the orbit alongaxis with

0 < x < K goes toEk . Similarly whenx > K, the orbit also goes tBx. Hencex-axis is the stable
manifold. The variation matrix of the system (2.1)Edtis

J =
> q(x) _
L PO e °
[ p(x ) (x)  —p(x*)
— 52
I Eq/(X*) -0
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whereh(x) = xg(x)/p(X) is the prey isocline and

NI = peIN(K) -5
de(d’) = Sp(x’) [gq’(X*)—h’(X*)}

We know that iftr(J*) < 0 anddetJ*) > 0, then the equilibrium poinE* of the system (2.1) is
locally asymptotically stable. In other words(x*)h’(x*) < d and[dq/ (x*)/B] > h'(x*). That s,

N (x") < min{8/p(x"), &q (x")/B}.

HenceE* is locally asymptotically stable if the following inequality holds.

(AS)H(x*) <0

Next, we state the following lemma to satisfy the meanings of the biology, so that the system
(2.1) is as "well behaved” as one intuits from the biological problem.

Lemma 2.1 Assume (A1), (A2) and (A3) hold. Then all soluti¢r&),y(t)) of the system (2.1)
are positive and bounded.

Proof. Firstly, we want to show that all the solutiofigt), y(t)) of the system (2.1) are positive.
In other words, if the initial pointxo,yo) = (X(0),y(0)) is positive, ther(x(t),y(t)) is in the first
guadrant for alt > 0. Let’s divide the first quadrant into four regions I-1V which are defined
below:

I = {(xy)|h(x) <y, k(x) >y, x>0, y> 0}
I = {(xy)hx >y, k(x)>y, x>0,y>0}
= {(xy)hx) >y, k(x) <y, x>0, y> 0}
vV = {(xy)hX <y, k(x) <y, x>0, y>0}

whereh(x) = xg(x)/p(x) andk(x) = &q(x)/B; see Figure 3 or Figure 4.

Consider the following two cases:

(A) (x0,Yo) is near the positive-axis;
(B) (Xo0,Yo) is near the positivg-axis.

In the case (A), the initial pointxp, yo) will be in the region | or Il. From Figure 3 or 4, singe
is positive in the region | or Il, the solutiofx(t),y(t)) with the initial point(xo, o) will run away
the positivex-axis. In the cases (B), the initial poifio, yo) will be in region Il or IV. From Figure
3 or 4, sincex is positive in the region ll1, the solutiofx(t),y(t)) with the initial point(xo,yo) in
the region 1l will run away the positivg-axis. Next we want to show that if the initial point starts
in IV, then the trajectory of the solutiax(t), y(t)) will go into the region Ill. That is, the trajectory



Figure 3:p'(0) >0

Figure 4:p'(0) =0
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of the solution(x(t), y(t)) will not stay in the region IV or not go tg-axis. Suppose the trajectory
finally stays at some poirtk,y) in the region IV. Then the poir{i, y) will be an equilibrium point
of the system (2.1). This is a contradiction to (A4). Thus any solufigt),y(t)) starts in the
region IV won't stay in it. Besides, when the trajectory in the region IV approachgsxis, we
find thatx — 0 andy — —e asx — 0. Hence there exists some> 0 such that(x(t), y(t)) is in
the region Il whenever > t;. Therefore, all solution§x(t), y(t)) are positive.

Secondly, we want to show that all solutiopxst), y(t)) of the system (2.1) are bounded. That
is, x(t) andy(t) are both bounded for all> 0. At first, (a) we want to show that) < K for alll
t > 0 wheneverx(0) < K. Suppose&(t) > K for somet > 0. Then there exists > 0 such that
X(t2) = K andx(t2) > 0. By (A1) and (A2) we know thati(K) = 0 andp(K) > 0. Thus

X(tz2) = x(2)9(x(t2)) —y(t2) p(x(t2))
= —Yy(t2)p(K)
< 0

This is a contradiction ta(tz) > 0. Hencex(t) < K for all t > 0 whenevex(0) < K. Secondly,
(b) we will show thatx(t) < x(0) for allt > 0 whenevex(0) > K. By (A1) and (A2) we know that
g(x) <0andp(x) > 0for x> K. Then, by the system (2.1),

X

xg(x) —yp(X)
—-yp(x)
0

IN

A

Thusx is strictly decreasing for akk > K. Hencex(t) decreases to some poikit> K or there
existst > 0 such thatx(t) < K for all t > 1. Hence from (a) and (b) we know thaft) <M =
max{K, x(0)} for all t > 0. Next, (c) we are trying to show thgtt) < [dq(M)/p] for all t > 0
whenevery(0) < [0q(M)/B]. Suppose/(t) > [dq(M)/B] for somet > 0. Then there existg > 0
such thatys = [0q(M)/B] andy(ts) > 0. Thus by (A3) and(t3) < M, we know thatg(x(t3)) <
g(M). Hence by the system (2.1)

Jit) = yita) [ () }

q(x(ts))
_ (M) oq
= B {5 g <x<t3>>}
< 6[3)[6 0|
- 0

This is a contradiction tg(t3) > 0. Thereforey(t) < [6q(M)/p] for all t > 0 whenevery(0) <
[6g(M)/B]. At last, (d) we will show thay(t) < y(0) for all t > 0 whenevery(0) > [dq(M)/B].
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From (A3) and0 < x(t) < M for all t > 0, we know thaig(x(t)) < q(M) for allt > 0. Hence we
havey < 0. Thereforey(t) strictly decreases to sonye> [6q(M)/p] or there exists > 0 such
thaty < [6g(M)/B] fort > s. From (c) and (d)y(t) < N =max{oq(M)/B, y(0)} forallt > 0.

3 Global Stability

In this section, we want to introduce the following methods to analyze the global stability for
the system (2.1):

(i) Dulac’s criterion and PoincarBendixson theorem
(i) Comparison method

(iii) Lyapunov function

(iv) Stable limit cycle analysis

At first, we use the method (i) to analyze the system (2.1). We rewrite the system (2.1) to the
following form:

X = xg(x)—yp(x) = f(xy)

v g | =

y = y[é Bq(x)} =g(x.y)
Theorem 3.1 Let (A1)-(A4) hold. If
(3.2) h (X)p(x) —d < 0,

then the equilibrium poinE* of the system (3.1) is globally asymptotically stable.

Proof: Consider

1
H(x,y) = x>0,y>0
Then
o M
y y

0= by P
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Thus
oHf)  N(x
ox Y
o(Hg) _ 5
oy y2p(x)
A(HT) o(H 17, 5
s e = R[]

By the assumptiof (x)p(x) — 0 < O,

0X oy
Hence by Dulac criterion, there exists no periodic orbit in the first quadrant. From (A4), the
equilibrium pointE* is locally asymptotically stable. By Lemma 2.1 and PoigeBendixson
theorem, it suffices to show that the unique positive equilibrium g&ins globally asymptotically
stable in the first quadrant. O

Remark 3.2 The global stability for the system (3.1) with(x) = (1 —X), q(x) = x and that
p(x) = mx p(x) = mx/(a+x), or p(x) = x?/(a+x)(b+x) has been studied by Hsu and Huang
in [12]. In that paper, they used the Dulac’s criterion whtlix,y) = [p(x)]~1y~2 and Poinca-
Bendixson theorem to prove the global stability of the equilibrium point.

Remark 3.3 The condition (3.2h'(x)p(x) — 0 < 0 is weaker than the assumptitf(x) < 0
which satisfies that the prey isocline is decreasing. That is, if the prey isocline is decreasing, then
the Theorem 3.1 will be true.

Secondly, we use the method (ii) to analyze the system (2.1). Let’s consider the following
systems
X = xg(x) —yp(x)

@Y Vo= y[a-pgl
X = py-y)

Where the system (2.1) has a unique positive equilibrium ggint (x*,y*). And clearly, the
point E* is also the unique positive equilibrium point of the system (3.3). We are trying to study
the global stability oE* for the system (2.1) by using the comparison method. In order to present
the Theorem 3.5, we need the following Lemma 3.4.
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Lemma 3.4 If assumption (A1)-(A3) hold, then every orbit of the system (3.3) is a closed orbit
which encloses around*.

Proof: In the first quadrant, lineg = y* andx = x* cut it into four regions. Each orbit of the
system (3.3) will be one of the following three cases: (i) a closed orbit encloses a@Eduad(ii)
not a closed orbit and towail*, or (iii) not a closed orbit and away* (See Figure 5, 6 and 7).
For any solution(x(t),y(t)) of the system (3.3) with the initial poirik(0),y(0)) = (Xo,Yo) which
doesn't equal t&E* wherexg = X* andyp > y*, there ist; > 0 such that; = (x(t1),y(t1)) where
X(t1) = x* andy(t1) > y*. Equation (3.3) tells us that

dy y[d—By*/q(x)]

dx  pX)ly* -]
then, for any solutiorix(t), y(t)) of the system (3.3) with initial poin(xo, yo)

Sryong Sx8-By /A,

= T.
vo N X0 p(T)
Hence we have z z
Yy —n K 5—By*/q(1)
——dn= —— 2 dt.
Yo n X0 p(t)

Sincexp = x(t1) = X*,

% xtt) 5— By* /q(1)

w pm 0
This implies Z
y(t1) udn _o
Yo n
Hence we know thayp = y(t1). Therefore, cases (ii) and (iii) are not true. So, any orbit that is
closed orbit encloses arouid. O

Theorem 3.5 Let (A1)-(A4) hold. If

(3.4 (x—X") [Xr?(%) y*} <0 forall 0< x< K and x# X"

thenE* is globally asymptotically stable for the system (2.1).

Proof: Firstly, we know that systems (2.1) and (3.3) have the same equilibrium point in the first
guadrant, saf*. From Lemma 3.4., we know that the equilibrium pdiitof the system (3.3) is

a center. Let

= (Mg1,Ng,0)

= (M27 N27 0)

(TR Opl
|
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and
S xS =(0,0,0)
where
M1=xg(x) —yp(x) , Ni=y {6 B{X)]
]
(x)

o)

Mz = pO)(Y —y) szy[a—s

o]

then by computation we have
0 = MiNp—MyN;

. {[Xg(x) a0 {a Bq{;)} —pX)(y ) [a BQ{XJ }
y

v{ b [5-8Y | ~vpoo [3-B LS| ~pooiy ) 5- s}

v{ b -y o1 [5-p Y| B2 -2

We know that® < O if

or

That is,

21
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Henceb < 0 wheneverq(x) — q(x*)][xg(x)/p(x) — y*] < 0 for all x # x*. Since by (A3)y(x) > 0
for all x > 0, (x—x*)[q(x) —q(x*)] > 0. That is, [q(X) — q(x*)][xa(X)/p(x) — y*] < O implies
(x—x*)[xg(x)/p(x) — y*] < 0 for all x # x*. Thus by Lemma 3.4E* is globally asymptotically
stable for the system (2.1) whenever the inequality (3.4) holds. O

Remark 3.6 We know the assumption
o [X9(%) ] )

X=X) | == — <0 for all x #£ x

) 9y y
means that

[k(x) —y*][h(x) —y*] <O for all x # x*
That is, the prey isocling = h(x) lies above the horizontgl= y* whenever the predator isocline
y =Kk(x) lies belowy = y*.

Thirdly, we want to prove Theorem 3.5 by using the method (iii).

Proof: Let's consider the following Lyapunov function:

£ —a0) 90 Ty

x d(mp() By v n
onG = {(x,y) : x>0, y > 0}. Then the time derivative &f (x,y) computed along solution of the
system (2.1) is

V(xy) = dn

U = ), 30 (1)

- ‘“X)Z?(” [p<(x>) 5+ 0 et B

_ o q )Ex(;( 9 [XF?((X )) _yﬂ 3 Q(X)qu?(X*)y N q(X)q?x?(X*)W
Ao [

- “(X)q( S 128y | - Ay y-y)
-y

B q(X)qu?(X*) :Xr?((:)) - W: i ?1(();:)) y=y)- ;?q)((;) y=y)

— Q(X)qZXC)](X*) _ng((g) ﬂ,k_ 3 ;(qx()z) (y—y*)2

From the assumption

(Xx—Xx%) {)EJ((;))—W] <0 forall x # X"
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and by (A3)q (x) > Ofor all x > 0,

[a(x) —a(x*)] [?((;))—W] <0  forx#x.

Hence’(/(x, y) <0onG. Thus the equilibrium poirE* is globally stable. At last, we want to show
that E* is globally asymptotically stable. In other words, we are trying to show that only when
(xY) = (X',y"), V(x,y) = 0. Since

xg(x)

o) ot

y*} <0 for x #£ x*

we know that (x — x*)[xg(x)/p(x) — y*] = 0 only when x = x*.  This implies that
[a(x) — q(x*)][xg(x)/p(X) — y*] = 0 only whenx = x*. HenceV(x,y) = 0 if and only if
(y—y*)? =0 and[q(x) — q(x")][xg(x)/p(x) — y*] = 0. Thatis,y =y*, x = x*. Hence we know

that only when(x,y) = (x*,y*), V(x,y) = 0. Therefore, the equilibrium poirgE* of the system
(2.1) is globally asymptotically stable. O

Remark 3.7 In Hsu and Huang [12], they use the same method to the system (2.1g(wijthk x
where the Lyapunov function is

Zy * « Z ’
T—X X*“yn—y*
dt+p— ——dn.
x- TP(T) By* yon

V(va) =

Finally, we introduce the method (iv) to prove the global stability of the system (2.1).

Theorem 3.8 Let (A1)-(A4) hold. If
(3.5) h(x) <0, Vx>0

then the equilibrium poinE* of the system (2.1) is globally asymptotically stable in the first
guadrant.

Proof: It suffices to show that the system (2.1) has no closed orbit in the first quadrant. Suppose
on the contrary that there isTaperiodic orbitl = {(x(t),y(t))|0 <t < T} in the first quadrant.
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Compute
z
B of adg
A = |'<6X+ay> ds
Zq
0 0
S AR S
y=y(t)
Z7
B 0 0 y
=, Lo e g (5B )]} L
y=y(t)
Zq z
5 0 (5 )] oy (e
= — - dt+ — 0—B—— dt
s 57 (o ) oy [Y\°Paig ) ||
y=y y=y(t)
Z T Il Z T
_ /(X (Xg(x)_ >+ X Xg(x)” dt + {6— y} dt
0 [p() p(X) Y)+ P p(x) x=X(t) a(x) | | x=x)
y=y(t) y=y(t
Z1 z z z
p(X(t)) , 1 T
= x(t)dt+ X)h'(x dt+2 —y(t)dt— odt
LT o | atro " ey o
= = X)h' (X “dy—
ooy P o P X=x(t) o v o
Sincerl is aT-periodic,
Z p(x(T)) 1 Z y(T) 1
—dp=0 and —dy=0
p(x(0)) P y0) Y
Hence we have 7
T /
A= [P (X) =3[,y dt

From (3.5), it follows that
A<O.

This indicates that all periodic orbits of the system (2.1) in the first quadrant are orbitally stable.
Since every periodic orbit is orbitally stable and then there is a unique stable limit cycle in the first
guadrant. That iskE* is unstable. However, by (A4E* is locally asymptotically stable. Thus
there is no periodic orbit in the first quadrant. By Lemma 2.1 and Pd@rBandixson theorem, it
suffices to show that the unique positive equilibrium pd&htis globally asymptotically stable in

the first quadrant. O

Remark 3.9 From the Theorem 3.1, Theorem 3.5 and Theorem 3.7, we know that the assumption
(3.5) is a special case of the assumptions (3.2) and (3.4).
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