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Global Stability for a Predator-Prey System with

Predator Self-Limitation
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Abstract

The aim of this paper is to study the dynamical behavior in a class of predator-prey system with

predator self-limitation. We present some global stability results obtained from Dulac’s criterion and

Poincaŕe-Bendixson theorem, comparison method, and stable limit cycle analysis for the predator-prey

systems with predator self-limitation in the first quadrant.
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1 Introduction

Predator-prey models have been studied for a long time. Many biologists believe that if the

unique positive equilibrium point of a predator-prey system is locally asymptotically stable, then

it is globally asymptotically stable. However, this is not always true. In [14], Josef found that

a unique positive locally asymptotically stable equilibrium point has at least one limit cycle sur-

rounding the equilibrium point under suitable condition. Thus many mathematicians try to use

some well-known methods to find the conditions for global stability for the equilibrium point of

predator-prey systems. Firstly, they construct a Lyapunov function and establish the global stabil-

ity by LaSalle’s invariance principle (See [2,8,9,11]). Secondly, they employ the Dulac’s criterion

to eliminate the existence of the periodic solution and prove the global stability by Poincaré-

Bendixson theorem (See [10,12,15,19]). Thirdly, comparison method is used to prove the global

stability for some predator-prey systems (See [5,15,17]). Furthermore, there is a method which

people can compares the trajectory of the system with an auxiliary system which is obtained by

”mirror” reflection (See [6,15]). Finally, there still exists a method to analyze the global stability
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of the predator-prey systems. It’s stable limit cycle analysis (See [10,12,13,22,23]). However,

in these models which have been discussed, the assumptions for predator is that the populations

will infinitely increase if the prey populations is large enough. From the viewpoint of the biology,

this is false. Hence we are trying to find the conditions of predator which is more appropriating

biology.

At first, in the Lotka-Volterra model, the predator zero isocline is vertical. That is, the same

number of prey is assumed to be sufficient to maintain any number of predators (See Figure 1

curve A). This assumption can also be found in [7,8,20,21]. But this is most unlikely since larger

populations of predator require larger populations of prey to maintain them (See Figure 1 curve

B). This situation is discussed in [12] and [19]. Besides, mutual interference will also reduce indi-

vidual consumption rate (See Figure 1 curve C). Recently, many biologists discover that predator

populations might be influenced by the prey populations and predator’s self-limitation. That is,

even if predators have excess food, their populations are still limited by availability of some other

resource: nesting sites perhaps, or safe refuges of their own. This will put an upper limit on the

predator population irrespective of prey numbers (See Figure 1 curve D).

In order to explain the stabilizing effects of self-limitation in predator-prey interactions, we

give an example to state this. In 1983, Batzli [3] discovered that in the Arctic, the ground squirrels

have populations that remain remarkably constant from year to year. This is because the ground

squirrels are strongly self-limitation by their aggressive territorial defence of burrows used for

breeding and hibernating.

Next, we give the instance to describe the influence of the self-limitation. In 1972, Watson

and Moss [18] discuss the red grouse (Lagopus lagopus scoticus) feeding on heather(Calluna

vulgaris) on Scottish moorlands (See also Caughley and Lawton [4], 1981). They find that heather

comprises at least 90% of red grouse’s diet over most of the year, and it is the dominant higher

plant on the moors where the grouse live. The grouse themselves are strongly territorial, with the

size of the spring breeding population being determined by the number of territories established

by cocks in the previous autumn. And the larger the self-limitation is, the less fluctuating the

populations of the predator is (See Figure 2 curve (i) (ii) and (iii)).

The main purpose of this paper is to establish the global stability of the predator-prey model

with self-limitation predator.

In section 2, we introduce the primary model (2.1) with some assumptions and prove that all

solutions of the system (2.1) are positive and bounded.

In section 3, we use the four renowned methods, such as Dulac’s criterion, Lyapunov function,

comparison method, and stable limit cycle analysis, to discuss the global stability of the model

(3.1).
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Figure 1: curves A to D are predator zero isoclines of increasing complexity.

2 The Models

Consider the following predator-prey system

ẋ = xg(x)−yp(x)

(2.1) ẏ = y

[
δ−β

y
q(x)

]

x(0) > 0 , y(0) > 0
where· = d/dt, x andy represent the prey population and the predator population, respectively.

Because all we want to discuss is biological population, we only consider the first quadrant in the

x−yplane. The following assumptions are consistent with the system (2.1).

(A1) g∈C1([0,∞),R); g(0) > 0, and there existsK such that(x−K)g(x) < 0 for x 6= K. Firstly,

in the assumption (A1),K is defined as the prey environmental carrying capacity. Secondly, the

specific growth rate,g(x), governs the growth of the prey in the absence of predators. Several

forms ofg(x) have been catalogued in [1] or [2]. For examples,g(x) = r[1− (x/K)c]; 0 < c≤ 1,

andg(x) = r(K − x)/(K + εx). We remark that a new feature of such predator-prey models is

incorporated into the case wheng′(0) > 0. This represents a prey population which can exhibit an

accelerated population specific growth rate for intermediate values of population as a strategy to

avoid extinction.

(A2) p∈C1([0,∞),R); p(0) = 0 andp′(x)≥ 0 for all x≥ 0.

The functional response of the predator,p(x), has been discussed in the literature. Several forms

of p(x) can be found in [16] or [17]. In some modelsp(x) is assumed unbounded, for example,

p(x) = mx in the Lotka-Volterra model or in the Holling-type I model. In othersp(x) is assumed

bounded, for instance,p(x) = mx/(a+x), p(x) = mx2/(a+x2), p(x) = mxc, 0 < c≤ 1, or p(x) =
m(1−e−cx).
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Figure 2: This prey isocline combined with predator zero isoclines with increasing levels of self-

limitation. (x∗,y∗) is the equilibrium point. (See [4] and [18])
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(A3) q∈C1([0,∞),R); q(0) = 0, q′(x) > 0, ∀x≥ 0.

The predator environmental carrying capacity is influenced by the density of the prey, sayq(x). In

[9], q(x) = x is a special case. Besides, by the Figure 1, the curve B is a sloping line withq(x) = x,

the curve C is a curve withq(x) increasing infinitely without any limitation, and the curve D is a

curve withlimx→∞ q(x) = q∞ > 0 whereq(x) can’t increase infinitely.

Clearly,EK = (K,0) is an equilibrium point of the system (2.1). As we are interested in the

stability of the unique positive equilibrium point in the first quadrant for the system (2.1), we need

the following assumption:

(A4) There exists a unique positive equilibrium pointE∗ = (x∗,y∗) such thatx∗g(x∗)−
y∗p(x∗) = 0 andδ−βy∗/q(x∗) = 0.

To analyze the behavior of the system (2.1), firstly, we discuss the local behavior of the equi-

librium points in the system (2.1) by the Hartman-Grobman Theorem. Now let us study the local

behavior of the system (2.1) at equilibrium pointsEK andE∗. The Jacobian matrix of the system

(2.1) takes the form

J =




g(x)+xg′(x)−yp′(x) −p(x)

βy2 q′(x)
[q(x)]2

δ−2β
y

q(x)




At EK

JK =

[
g(K)+Kg′(K) −p(K)

0 δ

]

=

[
Kg′(K) −p(K)

0 δ

]

From (A1),Kg′(K) < 0. Therefore,det(JK) = δKg′(K) < 0. Hence the equilibrium pointEK is a

saddle point. Let’s find out the stable manifold. We consider one orbit of the system (2.1) along

x-axis. As0 < x < K, by the system (2.1) and (A1),ẋ is positive. Thus the orbit alongx-axis with

0 < x < K goes toEK . Similarly whenx > K, the orbit also goes toEK . Hencex-axis is the stable

manifold. The variation matrix of the system (2.1) atE∗ is

J∗ =




g(x∗)+x∗g′(x∗)−y∗p′(x∗) −p(x∗)

β(y∗)2 q′(x∗)
[q(x∗)]2

−δ




=




p(x∗)h′(x∗) −p(x∗)
δ2

β
q′(x∗) −δ



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whereh(x) = xg(x)/p(x) is the prey isocline and

tr(J∗) = p(x∗)h′(x∗)−δ

det(J∗) = δp(x∗)
[

δ
β

q′(x∗)−h′(x∗)
]

We know that iftr(J∗) < 0 anddet(J∗) > 0, then the equilibrium pointE∗ of the system (2.1) is

locally asymptotically stable. In other words,p(x∗)h′(x∗) < δ and[δq′(x∗)/β] > h′(x∗). That is,

h′(x∗) < min{δ/p(x∗), δq′(x∗)/β}.

HenceE∗ is locally asymptotically stable if the following inequality holds.

(A5) h′(x∗)≤ 0

Next, we state the following lemma to satisfy the meanings of the biology, so that the system

(2.1) is as ”well behaved” as one intuits from the biological problem.

Lemma 2.1 Assume (A1), (A2) and (A3) hold. Then all solutions(x(t),y(t)) of the system (2.1)

are positive and bounded.

Proof. Firstly, we want to show that all the solutions(x(t),y(t)) of the system (2.1) are positive.

In other words, if the initial point(x0,y0) ≡ (x(0),y(0)) is positive, then(x(t),y(t)) is in the first

quadrant for allt > 0. Let’s divide the first quadrant into four regions I-IV which are defined

below:

I = {(x,y)|h(x) < y, k(x) > y, x > 0, y > 0}
II = {(x,y)|h(x) > y, k(x) > y, x > 0, y > 0}

III = {(x,y)|h(x) > y, k(x) < y, x > 0, y > 0}
IV = {(x,y)|h(x) < y, k(x) < y, x > 0, y > 0}

whereh(x) = xg(x)/p(x) andk(x) = δq(x)/β; see Figure 3 or Figure 4.

Consider the following two cases:

(A) (x0,y0) is near the positivex-axis;

(B) (x0,y0) is near the positivey-axis.

In the case (A), the initial point(x0,y0) will be in the region I or II. From Figure 3 or 4, sinceẏ

is positive in the region I or II, the solution(x(t),y(t)) with the initial point(x0,y0) will run away

the positivex-axis. In the cases (B), the initial point(x0,y0) will be in region III or IV. From Figure

3 or 4, sinceẋ is positive in the region III, the solution(x(t),y(t)) with the initial point(x0,y0) in

the region III will run away the positivey-axis. Next we want to show that if the initial point starts

in IV, then the trajectory of the solution(x(t),y(t)) will go into the region III. That is, the trajectory



15

 

*E  

)(xhy =  

y  

x  
K  

III  

II  

I  

IV  

)(xky =  

Figure 3:p′(0) > 0

 

*E  

)(xhy =  

y  

x  
K  

III  

II  

I  

IV  

)(xky =  

Figure 4:p′(0) = 0



16

of the solution(x(t),y(t)) will not stay in the region IV or not go toy-axis. Suppose the trajectory

finally stays at some point(x,y) in the region IV. Then the point(x,y) will be an equilibrium point

of the system (2.1). This is a contradiction to (A4). Thus any solution(x(t),y(t)) starts in the

region IV won’t stay in it. Besides, when the trajectory in the region IV approaches toy-axis, we

find thatẋ→ 0 andẏ→−∞ asx→ 0. Hence there exists somet1 > 0 such that(x(t),y(t)) is in

the region III whenevert ≥ t1. Therefore, all solutions(x(t),y(t)) are positive.

Secondly, we want to show that all solutions(x(t),y(t)) of the system (2.1) are bounded. That

is, x(t) andy(t) are both bounded for allt ≥ 0. At first, (a) we want to show thatx(t) < K for all

t ≥ 0 wheneverx(0) < K. Supposex(t) ≥ K for somet > 0. Then there existst2 > 0 such that

x(t2) = K andẋ(t2)≥ 0. By (A1) and (A2) we know thatg(K) = 0 andp(K) > 0. Thus

ẋ(t2) = x(t2)g(x(t2))−y(t2)p(x(t2))

= −y(t2)p(K)

< 0

This is a contradiction tȯx(t2) ≥ 0. Hencex(t) < K for all t ≥ 0 wheneverx(0) < K. Secondly,

(b) we will show thatx(t)≤ x(0) for all t ≥ 0 wheneverx(0) > K. By (A1) and (A2) we know that

g(x)≤ 0 andp(x) > 0 for x≥ K. Then, by the system (2.1),

ẋ = xg(x)−yp(x)

≤ −yp(x)

< 0

Thusx is strictly decreasing for allx≥ K. Hencex(t) decreases to some pointx̂≥ K or there

existsτ > 0 such thatx(t) < K for all t ≥ τ. Hence from (a) and (b) we know thatx(t) ≤ M ≡
max{K, x(0)} for all t ≥ 0. Next, (c) we are trying to show thaty(t) < [δq(M)/β] for all t ≥ 0

whenevery(0) < [δq(M)/β]. Supposey(t) ≥ [δq(M)/β] for somet > 0. Then there existst3 > 0

such thaty3 = [δq(M)/β] and ẏ(t3) ≥ 0. Thus by (A3) andx(t3) ≤ M, we know thatq(x(t3)) ≤
q(M). Hence by the system (2.1)

ẏ(t3) = y(t3)
[

δ−β
y(t3)

q(x(t3))

]

=
δq(M)

β

[
δ−β

δq(M)
βq(x(t3))

]

<
δq(M)

β
[δ−δ]

= 0

This is a contradiction tȯy(t3) ≥ 0. Therefore,y(t) < [δq(M)/β] for all t ≥ 0 whenevery(0) <

[δq(M)/β]. At last, (d) we will show thaty(t) ≤ y(0) for all t ≥ 0 whenevery(0) ≥ [δq(M)/β].
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From (A3) and0 < x(t) ≤M for all t ≥ 0, we know thatg(x(t)) ≤ q(M) for all t ≥ 0. Hence we

haveẏ < 0. Therefore,y(t) strictly decreases to somey≥ [δq(M)/β] or there existss> 0 such

thaty < [δq(M)/β] for t ≥ s. From (c) and (d),y(t)≤ N≡max{δq(M)/β, y(0)} for all t ≥ 0.

3 Global Stability

In this section, we want to introduce the following methods to analyze the global stability for

the system (2.1):

(i) Dulac’s criterion and Poincaré-Bendixson theorem

(ii) Comparison method

(iii) Lyapunov function

(iv) Stable limit cycle analysis

At first, we use the method (i) to analyze the system (2.1). We rewrite the system (2.1) to the

following form:

ẋ = xg(x)−yp(x)≡ f (x,y)

ẏ = y

[
δ−β

y
q(x)

]
≡ g(x,y)

Theorem 3.1 Let (A1)-(A4) hold. If

(3.2) h′(x)p(x)−δ < 0,

then the equilibrium pointE∗ of the system (3.1) is globally asymptotically stable.

Proof: Consider

H(x,y) =
1

p(x)y2 x > 0, y > 0

Then

H f =
h(x)
y2 − 1

y

Hg =
1

p(x)

[
δ
y
−β

1
q(x)

]
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Thus

∂(H f )
∂x

=
h′(x)

y2

∂(Hg)
∂y

= − δ
y2p(x)

∂(H f )
∂x

+
∂(Hg)

∂y
=

1
y2

[
h′(x)− δ

p(x)

]

By the assumptionh′(x)p(x)−δ < 0,

∂(H f )
∂x

+
∂(Hg)

∂y
< 0

Hence by Dulac criterion, there exists no periodic orbit in the first quadrant. From (A4), the

equilibrium pointE∗ is locally asymptotically stable. By Lemma 2.1 and Poincaré-Bendixson

theorem, it suffices to show that the unique positive equilibrium pointE∗ is globally asymptotically

stable in the first quadrant. 2

Remark 3.2 The global stability for the system (3.1) withg(x) = (1− x), q(x) = x and that

p(x) = mx, p(x) = mx/(a+ x), or p(x) = x2/(a+ x)(b+ x) has been studied by Hsu and Huang

in [12]. In that paper, they used the Dulac’s criterion withH(x,y) = [p(x)]−1y−2 and Poincaŕe-

Bendixson theorem to prove the global stability of the equilibrium point.

Remark 3.3 The condition (3.2)h′(x)p(x)− δ < 0 is weaker than the assumptionh′(x) ≤ 0

which satisfies that the prey isocline is decreasing. That is, if the prey isocline is decreasing, then

the Theorem 3.1 will be true.

Secondly, we use the method (ii) to analyze the system (2.1). Let’s consider the following

systems
ẋ = xg(x)−yp(x)

(2.1) ẏ = y

[
δ−β

y
q(x)

]

ẋ = p(x)(y−y∗)
(3.3)

ẏ = y

[
δ−β

y∗

q(x)

]

Where the system (2.1) has a unique positive equilibrium pointE∗ = (x∗,y∗). And clearly, the

point E∗ is also the unique positive equilibrium point of the system (3.3). We are trying to study

the global stability ofE∗ for the system (2.1) by using the comparison method. In order to present

the Theorem 3.5, we need the following Lemma 3.4.
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Lemma 3.4 If assumption (A1)-(A3) hold, then every orbit of the system (3.3) is a closed orbit

which encloses aroundE∗.

Proof: In the first quadrant, linesy = y∗ andx = x∗ cut it into four regions. Each orbit of the

system (3.3) will be one of the following three cases: (i) a closed orbit encloses aroundE∗, or (ii)

not a closed orbit and towardE∗, or (iii) not a closed orbit and awayE∗ (See Figure 5, 6 and 7).

For any solution(x(t),y(t)) of the system (3.3) with the initial point(x(0),y(0)) = (x0,y0) which

doesn’t equal toE∗ wherex0 = x∗ andy0 > y∗, there ist1 > 0 such thatE1 = (x(t1),y(t1)) where

x(t1) = x∗ andy(t1) > y∗. Equation (3.3) tells us that

dy
dx

=
y[δ−βy∗/q(x)]

p(x)[y∗−y]

then, for any solution(x(t),y(t)) of the system (3.3) with initial point(x0,y0)
Z y

y0

y∗−η
η

dη =
Z x

x0

δ−βy∗/q(τ)
p(τ)

dτ.

Hence we have Z y(t1)

y0

y∗−η
η

dη =
Z x(t1)

x0

δ−βy∗/q(τ)
p(τ)

dτ.

Sincex0 = x(t1) = x∗, Z x(t1)

x0

δ−βy∗/q(τ)
p(τ)

dτ = 0

This implies Z y(t1)

y0

y∗−η
η

dη = 0

Hence we know thaty0 = y(t1). Therefore, cases (ii) and (iii) are not true. So, any orbit that is

closed orbit encloses aroundE∗. 2

Theorem 3.5 Let (A1)-(A4) hold. If

(3.4) (x−x∗)
[

xg(x)
p(x)

−y∗
]

< 0 f or all 0 < x < K and x 6= x∗

thenE∗ is globally asymptotically stable for the system (2.1).

Proof: Firstly, we know that systems (2.1) and (3.3) have the same equilibrium point in the first

quadrant, sayE∗. From Lemma 3.4., we know that the equilibrium pointE∗ of the system (3.3) is

a center. Let

~S1 = (M1,N1,0)

~S2 = (M2,N2,0)
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Figure 6:E∗ is a sink.
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Figure 7:E∗ is a source.

and
~S1× ~S2 ≡ (0,0,θ)

where

M1 = xg(x)−yp(x) , N1 = y

[
δ−β

y
q(x)

]

M2 = p(x)(y∗−y) , N2 = y

[
δ−β

y∗

q(x)

]

then by computation we have

θ = M1N2−M2N1

= y

{
[xg(x)−yp(x)]

[
δ−β

y∗

q(x)

]
− p(x)(y∗−y)

[
δ−β

y
q(x)

]}

= y

{
[xg(x)

[
δ−β

y∗

q(x)

]
−yp(x)

[
δ−β

y∗

q(x)

]
− p(x)(y∗−y)

[
δ−β

y
q(x)

]}

= y

{
[xg(x)−y∗p(x)]

[
δ−β

y∗

q(x)

]
−β

p(x)
q(x)

(y∗−y)2
}

We know thatθ < 0 if{
[xg(x)−y∗p(x)]

[
δ−β

y∗

q(x)

]
−β

p(x)
q(x)

(y∗−y)2
}

< 0

or [
xg(x)
p(x)

−y∗
][

δ−β
y∗

q(x)

]
− β

q(x)
(y∗−y)2 < 0

That is,
βy∗

q(x)q(x∗)
[q(x)−q(x∗)]

[
xg(x)
p(x)

−y∗
]
− β

q(x)
(y∗−y)2 < 0
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Henceθ < 0 whenever[q(x)−q(x∗)][xg(x)/p(x)−y∗] < 0 for all x 6= x∗. Since by (A3)q′(x) > 0

for all x ≥ 0, (x− x∗)[q(x)− q(x∗)] > 0. That is, [q(x)− q(x∗)][xg(x)/p(x)− y∗] < 0 implies

(x− x∗)[xg(x)/p(x)− y∗] < 0 for all x 6= x∗. Thus by Lemma 3.4,E∗ is globally asymptotically

stable for the system (2.1) whenever the inequality (3.4) holds. 2

Remark 3.6 We know the assumption

(x−x∗)
[

xg(x)
p(x)

−y∗
]

< 0 for all x 6= x∗

means that

[k(x)−y∗][h(x)−y∗] < 0 for all x 6= x∗

That is, the prey isocliney = h(x) lies above the horizontaly = y∗ whenever the predator isocline

y = k(x) lies belowy = y∗.

Thirdly, we want to prove Theorem 3.5 by using the method (iii).

Proof: Let’s consider the following Lyapunov function:

V(x,y) =
Z x

x∗
q(τ)−q(x∗)

q(τ)p(τ)
dτ+

q(x∗)
βy∗

Z y

y∗
η−y∗

η
dη

onG = {(x,y) : x > 0, y > 0}. Then the time derivative ofV(x,y) computed along solution of the

system (2.1) is

V̇(x,y) =
q(x)−q(x∗)

q(x)p(x)
ẋ+

q(x∗)
βy∗

(
y−y∗

y

)
ẏ

=
q(x)−q(x∗)

q(x)

[
xg(x)
p(x)

−y

]
+

q(x∗)
βy∗

(y−y∗)
[

β
y∗

q(x∗)
−β

y
q(x)

]

=
q(x)−q(x∗)

q(x)

[
xg(x)
p(x)

−y∗
]
− q(x)−q(x∗)

q(x)
y+

q(x)−q(x∗)
q(x)

y∗

+
q(x∗)

y∗
(y−y∗)

[
y∗

q(x∗)
− y

q(x)

]

=
q(x)−q(x∗)

q(x)

[
xg(x)
p(x)

−y∗
]
− q(x)−q(x∗)

q(x)
(y−y∗)+(y−y∗)

−yq(x∗)
y∗q(x)

(y−y∗)

=
q(x)−q(x∗)

q(x)

[
xg(x)
p(x)

−y∗
]
+

q(x∗)
q(x)

(y−y∗)− yq(x∗)
y∗q(x)

(y−y∗)

=
q(x)−q(x∗)

q(x)

[
xg(x)
p(x)

−y∗
]
− q(x∗)

y∗q(x)
(y−y∗)2

From the assumption

(x−x∗)
[

xg(x)
p(x)

−y∗
]

< 0 f or all x 6= x∗
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and by (A3)q′(x) > 0 for all x≥ 0,

[q(x)−q(x∗)]
[

xg(x)
p(x)

−y∗
]

< 0 f or x 6= x∗.

HenceV̇(x,y)≤ 0 onG. Thus the equilibrium pointE∗ is globally stable. At last, we want to show

that E∗ is globally asymptotically stable. In other words, we are trying to show that only when

(x,y) = (x∗,y∗), V̇(x,y) = 0. Since

(x−x∗)
[

xg(x)
p(x)

−y∗
]

< 0 f or x 6= x∗

we know that (x − x∗)[xg(x)/p(x) − y∗] = 0 only when x = x∗. This implies that

[q(x) − q(x∗)][xg(x)/p(x) − y∗] = 0 only when x = x∗. Hence V̇(x,y) = 0 if and only if

(y− y∗)2 = 0 and [q(x)−q(x∗)][xg(x)/p(x)− y∗] = 0. That is,y = y∗, x = x∗. Hence we know

that only when(x,y) = (x∗,y∗), V̇(x,y) = 0. Therefore, the equilibrium pointE∗ of the system

(2.1) is globally asymptotically stable. 2

Remark 3.7 In Hsu and Huang [12], they use the same method to the system (2.1) withq(x) = x

where the Lyapunov function is

V(x,y) =
Z x

x∗
τ−x∗

τp(τ)
dτ+β

x∗

y∗

Z y

y∗
η−y∗

η
dη.

Finally, we introduce the method (iv) to prove the global stability of the system (2.1).

Theorem 3.8 Let (A1)-(A4) hold. If

(3.5) h′(x) < 0, ∀x > 0

then the equilibrium pointE∗ of the system (2.1) is globally asymptotically stable in the first

quadrant.

Proof: It suffices to show that the system (2.1) has no closed orbit in the first quadrant. Suppose

on the contrary that there is aT-periodic orbitΓ = {(x(t),y(t))|0≤ t ≤ T} in the first quadrant.
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Compute

∆ =
Z

Γ

(
∂ f
∂x

+
∂g
∂y

)
ds

=
Z T

0

[
∂
∂x

f (x,y)+
∂
∂y

g(x,y)
]∣∣∣∣ x=x(t)

y=y(t)

dt

=
Z T

0

{
∂
∂x

[xg(x)−yp(x)]+
∂
∂y

[
y

(
δ−β

y
q(x)

)]}∣∣∣∣ x=x(t)
y=y(t)

dt

=
Z T

0

∂
∂x

[
p(x)

(
xg(x)
p(x)

−y

)]∣∣∣∣ x=x(t)
y=y(t)

dt+
Z T

0

∂
∂y

[
y

(
δ−β

y
q(x)

)]∣∣∣∣ x=x(t)
y=y(t)

dt

=
Z T

0

[
p′(x)

(
xg(x)
p(x)

−y

)
+ p(x)

(
xg(x)
p(x)

)′]∣∣∣∣ x=x(t)
y=y(t)

dt+
Z T

0

[
δ−2β

y
q(x)

]∣∣∣∣ x=x(t)
y=y(t)

dt

=
Z T

0

p′(x(t))
p(x(t))

ẋ(t)dt+
Z T

0
[p(x)h′(x)]

∣∣
x=x(t) dt+2

Z T

0

1
y(t)

ẏ(t)dt−
Z T

0
δdt

=
Z p(x(T))

p(x(0))

1
p

dp+
Z T

0
[p(x)h′(x)]

∣∣
x=x(t) dt+2

Z y(T)

y(0)

1
y

dy−
Z T

0
δdt

SinceΓ is aT-periodic,

Z p(x(T))

p(x(0))

1
p

dp= 0 and
Z y(T)

y(0)

1
y

dy= 0

Hence we have

∆ =
Z T

0
[p(x)h′(x)−δ]

∣∣
x=x(t) dt

From (3.5), it follows that

∆ < 0.

This indicates that all periodic orbits of the system (2.1) in the first quadrant are orbitally stable.

Since every periodic orbit is orbitally stable and then there is a unique stable limit cycle in the first

quadrant. That is,E∗ is unstable. However, by (A4),E∗ is locally asymptotically stable. Thus

there is no periodic orbit in the first quadrant. By Lemma 2.1 and Poincaré-Bendixson theorem, it

suffices to show that the unique positive equilibrium pointE∗ is globally asymptotically stable in

the first quadrant. 2

Remark 3.9 From the Theorem 3.1, Theorem 3.5 and Theorem 3.7, we know that the assumption

(3.5) is a special case of the assumptions (3.2) and (3.4).
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具有自我設限捕食者之捕食系統的整穩定性 

 
何肇寶*    黃詩婷* 

摘    要 

本篇論文主要在研究具有自我設限捕食者之捕食系統的整體穩定性。我們利用 Dulac 法則及
Poinecaré-Bendixson定理、比較法則、Lyapunov函數及極限環穩定分析法等四種方法得到上述系
統之整體穩定性的充分條件。 

 
關鍵詞：整體穩定性、自我設限、捕食系統、Dulac法則、Poinecaré-Bendixson定理、比較法則、

極限環。 
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