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Global Stability for a Class of Predator-Prey
Systems with Ratio-Dependence
Chao-Pao Ho Kuen-Shyang Lih

Abstract

The main purpose of this paper is to study the global stability of the positive locally asymptotically sta-
ble rest point in a class of predator-prey systems with ratio-dependence. We apply theéBirudixson
theorem, Dulac’s criterion, and the method of limit cycle stability analysis to establish sufficient conditions
for the global stability.

Keywords: global stability, predator-prey system, ratio-dependence

1 Introduction

Continuous models, usually in the form of differential equations, have formed a large part
of the traditional mathematical ecology literature. In such models, the key terms specifying the
outcome of predator-prey interactions are the functional and numerical responses. The classical
assumptions are that the functional and numerical responses depend on prey density only, so we
call the traditional predation models as “ prey-dependent ” models. Interested readers may consult
[2], [4], and [14].

Recently, traditional prey-dependent models have been challenged by several ecologists, on the
grounds that the functional and numerical responses ought to depend on the ratio of prey/predator
or predator/prey. However, the term “ratio-dependent predation” was first used by Arditi and
Ginzburg [2] to describe situations in which the feeding rate of predators depends on the ratio of
prey/predator (called ratio-dependent functional response in [4]) rather than on prey density alone.

An opposite pathway to ratio-driven predator-prey dynamics began with Leslie’s [13] modifi-
cation of the logistic equation to include a lower trophic level
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and was called the logistic ratio-dependent predator equation by Berryman et al. in [4]. The
functional responses of models [6] and [8] in Fig. 1 can be interpreted in the

mx mx/y

b+ay+x b/y+a+x/y’

Hence, Berryman et al. [4] consider these models to be ratio-dependent.

The merits of prey-dependent versus ratio-dependent models have been argued intensely.
Arditi and Ginzburg [2] and Arditi et al. [3] give several examples of ecological systems in which
ratio-dependence explains the dynamic and equilibrial properties of the systems better than the
prey-dependence.

With regard to ratio-dependent functional response models [2], [6], [7], [8], [9], and [14] in
Fig. 1, a model of general form appears in the works of Arditi and Ginzburg [2] and Freedman
and Mathsen [7]. The authors [2] analyze the model by the isocline method and suggest that
the ratio-dependent form of functional response is a simple way of accounting for many types of
heterogeneity that occur in large scale natural systems, while the prey-dependent form may be
more appropriate for homogeneous system like chemostats. In [7] the authors derive a criterion
for persistence (that is, any solution with positive initial conditions never gets arbitrarily close to
the axis).

Two special cases of model [2] in Fig. 1 have been studied by Lundberg and Fryxell [14]
and Gutierrez [9]. The authors [14] discuss the local stability of the positive rest point by the
Hartman-Grobman theorem, and use an Euler approximation to the differential equations. The
ratio-dependent models predict that a rest point increases in both prey and predator density as
productivity (carrying capacity, K) increases. Gutierrez [9] has a conclusion that ratio-dependent
theory indicates the nature of the problem, and for some systems may provide sufficient detail.

Two particular models [6] and [8] in Fig. 1 have been discussed by some authors. In [6] DeAn-
gelis et al. investigate model [6] by the isocline method, Kolmogorov’s Criterion, and computer
simulation. The analyses indicate that increases in maximum feeding rate may result in decreases
in consumer population, and mutual interference between consumers is a major stabilizing factor
in a nonlinear system. In [8] Getz proposes an ordinary differential equation formulation that is
biologically more consistent than previous formulations, and the model [8] is obtained by this
formulation.

With regard to the logistic ratio-dependent models [12] and [17] in Fig. 1, Hsu and Huang [12]
apply Dulac’s criterion and construct Liapunov functions to establish the global stability. The main
purpose of this paper is to establish the global stability of the locally stable rest points of the ratio-
dependent systems (2.1) and (2.2).

In section 2, we state models (2.1) and (2.2) with assumptions.

In section 3, we discuss the global stability of the general model (3.1) of (2.1) and (2.2) by
Dulac’s criterion.
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Section 4 contains global stability properities of models (2.1) and (2.2) obtained either by the
results of (3.1) or by performing limit cycle stability analysis.

In section 5, we present two examples to show the applicability of our theorems.

Section 6 is the conclusion.

2 The Models

We consider the following predator-prey systems with ratio-dependence
. X
X=Xxg(X) — yp(;),

y= yh<§>, 2.1)
x(0) > 0, y(0) >0,

and

X=xg(x) —yp(X.y),
y=yls1-B)) 22)
x(0) >0, y(0) >0,

where “” stands for% , Xrepresents the prey population (or density), pnebresents the predator
population (or density). The specific growth ratgx), governs the growth of the prey in the
absence of predators. Several formgEf) have been catalogued in [15] or [16]. For example,

9(x) =r(1— %), g(x) = "2 org(x) = r[1—(£)%, 0< 3 < 1. p(xy) or p(}) is the predator
response function (or feeding rate per predator) which has been much discussed in the literature.
h(l;) ors(1—BY) is the per capita numerical response function wisésethe intrinsic growth rate

of the predator anf is the number of prey required to support one predator at equilibrium when

y equalsx/p.

The assumptions of system (2.1) gfx), p(%,), andh(’—;) are :
(A1) g€ CHR,,R), g(0) > 0; there existX > 0 such thag(K) = 0; ¢/(x) < 0 for all x> 0.
(A2) pc CYR.,R,), p(0) =0; p'(u) > Oforallu>0.
(A3) he CY(R.,R), h(0) < 0 or doesn't exist; there exists> 0 such that(L) = 0; i (u) > 0 for
allu>0.

For convenience, we let

f1(xy)=g(x) —

f2<x,y>=h<§>,
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that is,

xg(X) —yp(-)=xfa(x,y),

yh(=)=yfa(x,y).

<IX<KIX

To express the fact that the two species have a predator-prey interaction, we have

1. x x_,x, 0f

—=Ip(=) = =P (=)E==(xy) <0,

X P~ JP 5, %)
1,x_6f2
gh(y)—ax (xy) >0

So we assume
(A4) yp(§) —xp(§) > Oforall (xy) € R2.
For discussing the global stability of system (2.1), we will as sure that there is a unique positive
rest pointE* = (x*,y*) for system (2.1) under some conditions.
(A5) There exists a unique positive rest pdiit= (x*,y*) for system (2.1) wheré < x* < K and
y* > 0 satisfies

* K\ X;k
X“g(x") —Y‘D(y*) (2.3)
and

h(>)=0. (2.4)

<%

Remark 2.1 In[7], [12], and [17], the numerical responb%) =g[l- %] =s(1—B¥). Hence
h(0) does not exist.

The assumptions of system (2.2) gfx) andp(x,y) are :
(B1)ge CYR,,R), g(0) > 0; there exist > 0 such thag(K) = 0; ¢(x) < 0 for all x > 0.
(B2) pe CY(R%,R.), p(0,y) =0forally > 0, p(0,0) = 0 or does not exist%(x, y) >0

and % (x,y) < Ofor all (x,y) € R2.

The respective similar hypotheses to (A4) and (A5) are
(B3) p(x,y) +y‘;—‘;(x, y) > Ofor all (x,y) € R2.
(B4) There exists a unique positive rest pdiit= (x*,y*) for system (2.2) wheré < x* < K and
y* > 0 satisfies

gx) _y 1

pxy) % B 25)

) or m(x/y) (= %)

Remark 2.2. In [2], [7], [9], and [14], the functional responseéx,y) = p( 3T 00y) (= ayix

orm(1—e/Y). Hencep(0,0) does not exist.

X
y
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In order to represent the merits of the ratio-dependent model, we can see the following Fig. 2
and Fig. 3 which were given by Arditi and Ginzburg [2]. Fig. 2 presents the observation of Katz
(1985). From Fig. ga), we see that the number of prey eaten per predator depends not only on
prey density, but also on predator density. When the data points align on a single curvébFig. 2
is much better than Fig.(3). Hence, it is clear that the forlp(’—y‘) represents the data much better
than the formp(x). Fig. 3 presents the results of an experiment using a predator-prey systemin a
complex environment (Bernstein, 1981). Open circles are the average of the number of prey eaten
per predator where the prey densitys fixed at a value with the constant ratidy = 4. When
the numbers of prey and predators were changed with a ratio of 4 : 1, the number of prey eaten
per predator did not change significantly. Thus, the empirical data support the ratio-dependent
functional responsp(’—;).

It is not our purpose in this paper to discuss the ecological validity of such ratio-dependent
models, but to note that such ratio-dependence does lead to some mathematical problems and
therefore we study the global stability of such ratio-dependent models.

3 Global stability of a general model

For simplicity, we consider the following general model of (2.1) and (2.2)

X=Xg(X) —yp(X,y),
y = yh(xv y)a (31)
x(0)> 0, y(0) >0,

whereg(x), p(x,y), andh(x,y) satisfy
(H1) g € CY(R.,R), g(0) > 0; there existK > 0 such thag(K) = 0; ¢/(x) < 0 for all x> 0.
(H2) p € CY(R2,R;), p(0,y) = O for all y > 0, p(0,0) = O or does not existg—’z(x,y) > 0and
‘;—‘;(x,y) < 0Oforall (x,y) € R2.
(H3) h e CY(R2,R), h(K,0) > 0 or does not exist(0,y) < 0 or does not exist for ay > 0; there
existsL > 0 such thah(x, £) = 0; J(x,y) > 0and$(x,y) < Ofor all (xy) € RE..

The respective similar hypotheses to (A4) and (A5) are (p4)y) +y‘3—5(x, y) > 0 for all
(xy) €R% .
(H5) There exists a unique positive rest pdirit= (x*,y*) for system (3.1) wheré < x* < K and
y* > 0 satisfies

=L (3:2)

and
h(x*,y*) = 0. (3.3)
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Figure 2: A marine system studied in the field. Number of prey (barn&zdésnus balanoidés
eaten per predator (snailsosal pinx cinereain 24-7 hr, at different prey densitiesand predator
densitiesy. The data points align on a single curve much better when plotted against the/satio
(b) than when plotted against(a) (data from Katz, 1985).
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Figure 3: A mite system in a heterogeneous experimental environment. Number of prey
(Tetranychusurticaesaten per predatoPfiytoseiuluspersimil)sn 24 hr, when prey and predator
densities are varied in a constant ratio of 4 : 1. There is no significant difference (after Bernstein,
1981).

Remark 3.1 (a). In [2], [7], [9], and [14], the functional responsegx,y) = p(%,) or

%(: a) or m(1—e ) and the numerical responségx,y) = —d +cp(¥) or
—d+ c[arf(xx)} or —d+cm(1— e *¥). Hencep(0,0) andh(K,0) do not exist and the-axis is

not in the domain of system (3.1). Similarly, in [8], [12], and [1f]0,y) does not exist for all

y > 0 and they-axis is not in the domain of (3.1), and in [2], [7], [8], [9], [12], [14], and [17],
h(0,0) does not exist and theaxis ory-axis is not in the domain of (3.1). (b). Clearly system
(3.1) may have rest pointSy = (0,0) whenp(0, 0) andh(0,0) exist andE; = (K, 0) whenh(K, 0)
exists.

In this section we restrict our attention to the global stability of the general model (3.1). Firstly,
we study the local stability property of system (3.1) by the Hartman-Grobman theorem. Now we
compute the variational matrix of system (3.1), denoted by A, and get

g0 +xg() —yPRxy)  —pOy) —yPxy)
Yo (xy) h(x,y) +Y3(x.¥)

The local stability of each rest point is determined by the eigenvaludsnatrix A.
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At Ep = (070)1

0  h(0,0)

From (H1),9(0) > 0. If p(0,0) andh(0,y) exist for ally > 0 thenp(0,0) = 0 andh(0,0) < 0 by
(H2) and (H3). Observabl¥, is a saddle point with the positiweaxis as its stable manifold.
At E; = (K,0),

A(Eg) = l 9(0) —p(0.0) ]

Kg'(K) —p(K,0)
0  h(K,0)

From (H1), we have/(K) < 0. If h(K,0) exists therh(K,0) > 0 by (H3). Clearly,E; is a saddle
point with the positivex-axis as its stable manifold.

A(E1) = [

At E* = (X", y"),
A" = AEY)
[ e g )y g cy) —p(x*,y*>—y*‘3§<x*,y*>]
Y Ry h(x',y) +y P (x".y")
_ l X'g(X) + POy —Y R XY) POy -y XY ]
y &Y y 5 .y)

A* has eigenvalues given by

A2 — (traceA )\ +-detA =0

where
deth =y’ 00y )G () + X p0cy) -y Py )+
Y SRRy G0y ) 34
and 3 oh
traceA =xX'g (<) + L. (X ') Y J0Cy) +Y S0 35)

For stability we requirdke\ < 0 and so the necessary and sufficient conditions for locally asymp-

totical stability are
detA >0 and traceA < 0.

According to above three results, we can get the following lemma.

Lemma 3.2 (i) If (H1)-(H4) hold andp(0,0) and h(0,y) exist for ally > O, then the rest point
Eo = (0,0) of system (3.1) is a saddle point with the positvexis as its stable manifold. (i) If
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(H1)-(H4) hold andh(K, 0) exists, then the rest poift = (K,0) of system (3.1) is a saddle point
with the positivex-axis as its stable manifold. (iii) LéH1)-(H5)hold. If the unique positive rest
pointE* = (x*,y*) of system (3.1) satisfies

detA' >0 and traceA <0,

wheredetA andtraceA’ are defined by equations (3.4) and (3.5) respectively, Eieis locally
asymptotically stable.

Next, the following lemma is a statement that system (3.1) is as "well behaved” as an intuition
from the biological problem.

Lemma 3.3 Under assumptionéH1)-(H5), solutions of syster(B.1) are positive and bounded,
and furthermore, there exists> 0 such thaix(t) < K for all t > 1.

Proof: By Lemma 3.2(i)(ii), if h(K,0) exists {(0,0) andh(0,y) exist for ally > 0) then the
rest pointe; = (K,0) (Ep = (0,0)) is a saddle point with the positiveaxis {y-axis) as its stable
manifold. If solutions(x(t),y(t)) of system (3.1) enter the positixeaxis fy-axis) from the first
quadrant, therix(t),y(t)) will approachE; (Ep). This implies that the stable manifold Bf (Eo)
is not unique. So it is impossible that solutigmeét), y(t)) of system (3.1) enter the positixeaxis
or y-axis from the first quadrant. Thusf0) > 0 andy(0) > 0 then solutions of system (3.1) are
positive.

Firstly, we claim thai(t) is bounded for alt > 0. We consider the following two cases : (1)
x(0) < K, or (I1) x(0) > K. We discuss them as follows.

() If x(0) < K thenx(t) < K for all t > O, otherwise, there i > 0 such tha(t;) = K and
X(t1) > 0. From the first equation of (3.1), (H1), and (H2), it follows that

X(t2) = —y(t)p(x(ta).,y(t)) < O.

This contradictx(t1) > 0. That s, ifx(0) < K thenx(t) < K for allt > 0.
(1) From the first equation of (3.1), (H1), and (H2), we have 0 for all x> K, y> 0. That is,
X is strictly decreasing for at > K , y > 0. Therefore, ifx(0) > K then eitherx(t) decreases to
X > K, or there existg > 0 such thax(1) < K, which yields thak(t) < K for all t > T, by using
the same discussion as case (I). Hex¢g< M = maxK,x(0)} forallt > 0.

Next, we claim thay(t) is bounded for alt > 0. We consider the following two cases : (lll)
y(0) < ML~1, or (1IV) y(0) > ML, We discuss them as follows.

(I If y(0) < ML theny(t) < ML~ for all t > 0, otherwise, there i, > 0 such that
y(t2) = MLt andy(t,) > 0. From the second equation of (3.1) and (H3), it follows that

y(t2)=y(t2)h(X(t2),y(t2))
M

Mhixto), ) < Thow, M) =0
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This contradicts tg(t) > 0. That is, ify(0) < ML~! theny(t) < ML~ for all t > 0.

(IV) From the second equation of (3.1) and (H3), we hagey) <Oforall0<x< M, y>
ML~1, which impliesy < 0 for all 0 < x < M, y > ML™2. Therefore, ify(0) > ML~! then either
y(t) decreases tp > ML1, or there exists > 0 such that/(s) < ML, which yields thay(t) <
ML forallt > s, by using the same discussion as case (lll). Hefige< N = max{ML 1 y(0)}
forallt > 0.

Finally, we want to show that it is impossible thdt) decreases to > K, and hence we have
the result that there exists> 0 such thatx(t) < K for all t > 1. Suppose that(t) decreases to
X> K. Sincex(t) andy(t) are positive and bounded, according to the Poiax&endixson theorem,
solutions(x(t), y(t)) of system (3.1) will approach a positive rest pofRty), wherey > 0. This
contradicts (H5), and we complete the proof. O

Remark 3.4
Lemma 2.1 in [12] is a special case of Lemma 3.3.
Finally, we have the following theorem by applying Dulac’s criterion.

Theorem 3.5 Let(H1)-(H5) hold. IfdetA > 0 and

y ap

xd () + <P, y)— Yox (xy) +yg; (xy) <0 (3.6)

for all (x,y) € Ri wheredetA is defined by equations (3.4), then the rest p&inht= (x*,y*) of
system (3.1) is globally asymptotically stable in the first quadrant.

Proof: Let

f1 (% y)=xg(x) —yp(x,y),
f2(x, y)=yh(x,y).

We construct
Hixy) =x1y 1 x>0, y>0.
An easy computation yields

o(fiH) | 9(f2H)

ox ay

of; of; oH oH
(& + a—y)+ fl& + fga—y

—x 1y g 3G (09 Y58 (k) +hixy) +Y 5 (x)] -
X2y 1 xg(x) —yp(x.Y)] =Xy Z[yh(x.)]

—x Yy g0+ Lptcy) - Y5 (xy) 4y (k)] <O
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whenever

00+ 2pixy) - y3e(0y) +y5 (0y) <O forall (xy) € R.
Hence, if (3.6) holds then there is no periodic orbit in the first quadrant by Dulac’s criterion. From
Lemma 3.2 (iii) anddet A > 0, if (3.6) holds therE* is locally asymptotically stable. By Lemma
3.3 and the PoincéarBendixson theorem, it suffices to show that the unique positive restpoint

is globally asymptotically stable in the first quadrant. O

Remark 3.6

(a). Since

y op, . _of
Xg(x) + ;(p(xa y) 7)’& (Xa y) - X&a

Theorem 3.5 says that if (3.1) is a self-regulating predator-prey system (tl%étdso, ‘3—;‘ <0in
Rﬁ) then the rest poirE* = (x*,y*) is globally asymptotically stable in the first quadrant.
(b). Consider the following Leslie-Gower model [12] and [17]

x=rx(1— ) —y(mx
y=yis(1-BY)] (3.7)

x(0)y> 0,y(0) > 0,

where the functional responggx,y) = mxis of Holling-Type 1. System (3.7) is exactly a self-
regulating predator-prey system. Hence, by (a) the rest gdiof (3.7) is globally asymptotically
stable in the first quadrant. Remark 2.3 in [12] had the same conclusion by constructing a Liapunov
function.
(c). The Kolmogorov model [1], [5], and [11]

x=xf(x,y),

y=yh(xy),

x(0)> 0,y(0) > 0,
is a general model of (3.1), and Theorem 3.5 looks like a special case of Theorem 3 in [5]. Cheng
et al. proved Theorem 3 in [5] by the method of limit cycle stability analysis. However, the
assumptions for system (3.1) are different from the assumptions needed in Theorem 3 of [5] and
we get Theorem 3.5 by applying Dulac’s criterion.

4 Global stability of ratio-dependent models

In this section we state the principal results of the paper. Firstly, we restrict our attention
to the global stability of system (2.1). We are trying to do this by using Theorem 3.5. Here,
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p(x.y) = p(%) = p(u) andh(x,y) = h(¥) = h(u), s0

Fxy) = X+ 1Pxy) -y 3r(0) Y3 (XY
g0+ P () - utf

and by (3.4), we get
detA' = —x*u"d (X)W (u")

where
* X*
u = —.
y*
Assume
P () -t (w) <o,
that is,

[p(U)
u
for all u> 0. Thus, from (A1) and (A3), we have

+h(u)] >0

detX >0

and
F(xy) <0 forall (x,y)cRe.

Hence we obtain the following theorem by Theorem 3.5.

Theorem 4.1 Let(A1)-(A5) hold. If

PY by >0 @.1)
for all u > 0, then the rest poinE* of system (2.1) is globally asymptotically stable in the first
guadrant.

Remark 4.2 As an intuition from the biological problem, Theorem 4.1 is a statement that,
for any ratiou (prey/predator), if the sum of “the average rate of change of the feeding rate per
predator” and “the predator growth rate” is nondecreasingiasreases, then the rest potfit of
system (2.1) is globally asymptotically stable in the first quadrant.

Next, we study the global stability of system (2.2) by using the method of limit cycle stability
analysis. Hereh(x,y) = s(1—B¥). From (2.5) and (3.4)-(3.5), we obtain

deth = ~s{xg() Y (35 (") + 5 5

> <.y )} 42)
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and

traceA = [Xg(X)]’ |x=x- —y*%(x*,y*) —s. (4.3)

Hence, by Lemma 3.2(iii), we have the following lemma.
Lemma 4.3 Let(B1)-(B4) hold. IfdetA > 0 and
Xg(X)]' [x=x <5,

wheredetA is defined by equatiofd.2), then the rest poinE* of the systen{2.2) is locally
asymptotically stable.

We can combine Lemma 4.3 and the method of limit cycle stability analysis to get the follow-
ing theorem.

Theorem 4.4 Let (B1)-(B4) hold. IdetA > 0and
xg(x)]' <s (4.4)

for all x > 0, wheredetA is defined by equatio(4.2), then the rest poinE* of system(2.2) is
globally asymptotically stable in the first quadrant.

Proof: It suffices to show that system (2.2) has no closed orbit in the first quadrant. Suppose there
is aT—periodic orbitl’ = {(x(t),y(t))] 0<t<T}.
Compute

ZT xgx) 9p
T o {[p(X,Y)_y}&
0 Xg(x)

p(X, y) &[ D(X, y)

1Py +

(xy) +

]+

0. sy y
p(X7y)a/[p(X,y)(1_BX)]} X:X(t) dt.
y=y(t)
From (2.2), and
dpexy) _op . ,dx dp . dy

dt - &(X7y)a aiy(xvy)a
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it follows that

1
0= o By POV
S LR T
N 0 p(Xay) Y ox i
sy y,,0p
e By M o
y(t)
and
Zt 1 Z7
y(t)dy(t) . 3(1—[3)%) x=xp 4t
y(t)
Hence we have
Zt
b= Py ]+
P03 gy (LB oy
, y=y(t)
B T xg(x) ,0p
= 909-Hxg (0~ [DE 5 ey) =5t
25(1-BY) ~ [ L~ BOI DOy}, (45)
y=y(t)
Zq T
=, {[xg(x)] —y&(x,y)—s} X=X dt.

y=y(t)
From (B2) and (4.4), it follows that
A<O.

This indicates that all periodic orbits of system (2.2) in the first quadrant are orbitally stable.
Since every periodic orbit is orbitally stable then there is a unique stable limit cycle in the first
guadrant. That isE* is unstable. However, by (4.4etA > 0, and Lemma 4.3E* is locally
asymptotically stable. Thus, there is no periodic orbit in the first quadrant. By Lemma 3.3 and the
Poincaé-Bendixson theorem, it suffices to show that the unique positive restBoistglobally
asymptotically stable in the first quadrant. O

Remark 4.5 Theorem 4.4 says that, for any locally asymptotically stable rest giutf (2.2),
if the instantaneous rate of change of the recruitment rate (or harvesting rate) of the prey in the
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absence of predators with respect to prey densig/not greater than the intrinsic growth rate
of the predator, the&* is globally asymptotically stable in the first quadrant.

For the system (2.2) with(x,y) = p(x), (4.2) and (4.3) becomes
detA = —s[x"g'(x") —y*p'(x")] > 0

and
traceA = p(x") {xpg((xx))]

respectively, and we have the following corollary by (4.5).

X=X*

Corollary 4.6 Consider the systelf2.2) with p(x,y) = p(x) and let(B1)-(B4) hold. If
Q(x) <0 forall x>0,

where

QW) = p(x) [ng((xx))] s

andQ(x) is not identically zero, then the rest poiat is globally asymptotically stable in the first
guadrant.

mX

Remark 4.7 In [12], Hsu and Huang analyzed the global stability of system (2.2) p(ith= Abx

or Wﬁ;x) by Dulac's criterionH (x,y) = (a%) "y 2 or [W’(‘;X)]*lyfz and got Theorem

3.2(i) and Theorem 4.2(i) in [12] which are special cases of Corollary 4.6 (The more detailed
statement will be given in Remark 5.4).

Remark 4.8 When we consider system (2.2) and construct
H(xy) =y % x>0,y>0,

as we did in Theorem 3.5, we have the same result as Theorem 4.4.

5 Examples

We now illustrate the above results by means of two examples.
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Example 5.1 Consider the ratio-dependent functional response model in [7] and [14]

K= (1= ) Y.
. mx
y=y[-d +C(m)]7 (5.1)

x(0) > 0,y(0) >0,
which is a special case of system (2.1). We note that hypotheses (A1)-(A4) are satisfied when
cm—d > 0.

From (2.3) and (2.4), it follows that

& = (acr—cm+d)K
N acr ’
(cm—d)(acr—cm+d)K

a’cdr

y'

We observe that (A5) holds when

acr—cm+d > 0.

We can get the global stability property of (5.1) by Theorem 4.1. Spiog = ™ andh(u) =

atu
—d+c(zhy)s (4.1) becomes

G(u) >0,

where ( D
m(ac—
W ="z

We note thatG(u) > 0 for all u > 0if and only if
ac>1.
On the other hand, if we construct
Hxy)=x2y1 x>0,y>0,

then, as we did in Theorem 4.1, we get the following sufficient condition (5.2) which is different
from the condition (4.1)

—Hgﬁm—dwyumm<a (5.2)

We can verify that (5.2) is satisfied for the model (5.1) if and only if

ar—-m>0



130

Hence we have the following property.

Remark 5.2

(a). Sufficient conditions for the global stability of (5.1) are : Suppmee-d > 0, acr—cm+d >
. " . - g) ac>1,
0, and one of the following three conditions is satisfied;
() ar—m>0,
Then the rest poirE* of model (5.1) is globally asymptotically stable in the first quadrant.
(b). The local stability analysis of the rest potat of model (5.1) was done in [14]. In [7] the

authors showed that ibcr+d > cmthen model (5.1) is persistent.

Example 5.3 Consider the logistic ratio-dependent model in [7], [12], and [17]
(5.3)

which is a special case of system (2.2). It is easy to verify that (B1)-(B4) are satisfied.
Hence, as we did in Example 5.1, we obtain the following property by Corollary 4.6.

Remark 5.4 (a). Sufficient conditions for the global stability of model (5.3) are :
If either
(i) ar+Ks—Kr>0
or
(i) ar+Ks—Kr <0and(ar+Ks—Kr)?—8aKrs<0,
then the rest poirE* of model (5.3) is globally asymptotically stable in the first quadrant.
(b). The local stability analysis of the rest poiat of model (5.3) was done in [12] and [17].
Furthermore, the authors [12] analyzed the global stability property of model (5.3) by Dulac’s
criterion (H(x,y) = (™)~1y~2) and got the same conclusion as (a). In [7] the authors showed

a+tx
that model (5.3) is persistent.

6 Conclusion

In this paper, we have focused on predator-prey systems with ratio-dependence. It is our main
purpose to obtain the global stability properties of such ratio-dependent models (2.1) and (2.2).
It is a well-know fact that the local stability of a rest point in a predator-prey system does
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not necessarily imply its global stability. We have presented sufficient conditions for the global
stability of (2.1) and (2.2) by the application of Dulac’s criterion or the method of limit cycle
stability analysis . The ecological reasons for incorporating ratio-dependence into predator-prey
systems have been argued elsewhere. Itis not our purpose to enforce these arguments, but rather to
give sufficient conditions under which each unique positive rest point of such systems is globally
asymptotically stable in the first quadrant when they are used.
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