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Global Stability for a Class of Predator-Prey

Systems with Ratio-Dependence

Chao-Pao Ho∗ Kuen-Shyang Lin∗

Abstract

The main purpose of this paper is to study the global stability of the positive locally asymptotically sta-

ble rest point in a class of predator-prey systems with ratio-dependence. We apply the Poincaré-Bendixson

theorem, Dulac’s criterion, and the method of limit cycle stability analysis to establish sufficient conditions

for the global stability.
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1 Introduction

Continuous models, usually in the form of differential equations, have formed a large part

of the traditional mathematical ecology literature. In such models, the key terms specifying the

outcome of predator-prey interactions are the functional and numerical responses. The classical

assumptions are that the functional and numerical responses depend on prey density only, so we

call the traditional predation models as “ prey-dependent ” models. Interested readers may consult

[2], [4], and [14].

Recently, traditional prey-dependent models have been challenged by several ecologists, on the

grounds that the functional and numerical responses ought to depend on the ratio of prey/predator

or predator/prey. However, the term “ratio-dependent predation” was first used by Arditi and

Ginzburg [2] to describe situations in which the feeding rate of predators depends on the ratio of

prey/predator (called ratio-dependent functional response in [4]) rather than on prey density alone.

An opposite pathway to ratio-driven predator-prey dynamics began with Leslie’s [13] modifi-

cation of the logistic equation to include a lower trophic level

ẏ = y[s(1−β
y
x
)],
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and was called the logistic ratio-dependent predator equation by Berryman et al. in [4]. The

functional responses of models [6] and [8] in Fig. 1 can be interpreted in the

mx
b+ay+x

=
mx/y

b/y+a+x/y
.

Hence, Berryman et al. [4] consider these models to be ratio-dependent.

The merits of prey-dependent versus ratio-dependent models have been argued intensely.

Arditi and Ginzburg [2] and Arditi et al. [3] give several examples of ecological systems in which

ratio-dependence explains the dynamic and equilibrial properties of the systems better than the

prey-dependence.

With regard to ratio-dependent functional response models [2], [6], [7], [8], [9], and [14] in

Fig. 1, a model of general form appears in the works of Arditi and Ginzburg [2] and Freedman

and Mathsen [7]. The authors [2] analyze the model by the isocline method and suggest that

the ratio-dependent form of functional response is a simple way of accounting for many types of

heterogeneity that occur in large scale natural systems, while the prey-dependent form may be

more appropriate for homogeneous system like chemostats. In [7] the authors derive a criterion

for persistence (that is, any solution with positive initial conditions never gets arbitrarily close to

the axis).

Two special cases of model [2] in Fig. 1 have been studied by Lundberg and Fryxell [14]

and Gutierrez [9]. The authors [14] discuss the local stability of the positive rest point by the

Hartman-Grobman theorem, and use an Euler approximation to the differential equations. The

ratio-dependent models predict that a rest point increases in both prey and predator density as

productivity (carrying capacity, K) increases. Gutierrez [9] has a conclusion that ratio-dependent

theory indicates the nature of the problem, and for some systems may provide sufficient detail.

Two particular models [6] and [8] in Fig. 1 have been discussed by some authors. In [6] DeAn-

gelis et al. investigate model [6] by the isocline method, Kolmogorov’s Criterion, and computer

simulation. The analyses indicate that increases in maximum feeding rate may result in decreases

in consumer population, and mutual interference between consumers is a major stabilizing factor

in a nonlinear system. In [8] Getz proposes an ordinary differential equation formulation that is

biologically more consistent than previous formulations, and the model [8] is obtained by this

formulation.

With regard to the logistic ratio-dependent models [12] and [17] in Fig. 1, Hsu and Huang [12]

apply Dulac’s criterion and construct Liapunov functions to establish the global stability. The main

purpose of this paper is to establish the global stability of the locally stable rest points of the ratio-

dependent systems (2.1) and (2.2).

In section 2, we state models (2.1) and (2.2) with assumptions.

In section 3, we discuss the global stability of the general model (3.1) of (2.1) and (2.2) by

Dulac’s criterion.
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ẋ
=

rx
(1
−

x K
)−

y(
m

x)
ẏ
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ẏ
=

yh
(x y

)

M
od

el
(2

.2
)

ẋ
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ẏ
=

y[
s(

1
−

β
y x
)]

[8
]1

99
1

ẋ
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Figure 1: Ratio-dependent models wherex denotes prey andy denotes predator.
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Section 4 contains global stability properities of models (2.1) and (2.2) obtained either by the

results of (3.1) or by performing limit cycle stability analysis.

In section 5, we present two examples to show the applicability of our theorems.

Section 6 is the conclusion.

2 The Models

We consider the following predator-prey systems with ratio-dependence

ẋ = xg(x)−yp(
x
y
),

ẏ = yh(
x
y
), (2.1)

x(0) > 0, y(0) > 0,

and

ẋ = xg(x)−yp(x,y),

ẏ = y[s(1−β
y
x
)], (2.2)

x(0) > 0, y(0) > 0,

where “̇ ” stands ford
dt , x represents the prey population (or density), andy represents the predator

population (or density). The specific growth rate,g(x), governs the growth of the prey in the

absence of predators. Several forms ofg(x) have been catalogued in [15] or [16]. For example,

g(x) = r(1− x
K ), g(x) = r(K−x)

K+εx , or g(x) = r[1− ( x
K )δ], 0 < δ ≤ 1. p(x,y) or p( x

y) is the predator

response function (or feeding rate per predator) which has been much discussed in the literature.

h( x
y) or s(1−β y

x) is the per capita numerical response function wheres is the intrinsic growth rate

of the predator andβ is the number of prey required to support one predator at equilibrium when

y equalsx/β.

The assumptions of system (2.1) ong(x), p( x
y), andh( x

y) are :

(A1) g∈C1(R+,R), g(0) > 0; there existsK > 0 such thatg(K) = 0; g′(x) < 0 for all x > 0.

(A2) p∈C1(R+,R+), p(0) = 0; p′(u) > 0 for all u > 0.

(A3) h∈C1(R+,R), h(0) < 0 or doesn’t exist; there existsL > 0 such thath(L) = 0; h′(u) > 0 for

all u > 0.

For convenience, we let

f1(x,y)=g(x)− y
x

p(
x
y
),

f2(x,y)=h(
x
y
),
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that is,

xg(x)−yp(
x
y
)=x f1(x,y),

yh(
x
y
)=y f2(x,y).

To express the fact that the two species have a predator-prey interaction, we have

−1
x
[p(

x
y
)− x

y
p′(

x
y
)]=

∂ f1
∂y

(x,y) < 0,

1
y

h′(
x
y
)=

∂ f2
∂x

(x,y) > 0.

So we assume

(A4) yp( x
y)−xp′( x

y) > 0 for all (x,y) ∈ R2
+.

For discussing the global stability of system (2.1), we will as sure that there is a unique positive

rest pointE∗ = (x∗,y∗) for system (2.1) under some conditions.

(A5) There exists a unique positive rest pointE∗ = (x∗,y∗) for system (2.1) where0< x∗ < K and

y∗ > 0 satisfies

x∗g(x∗) = y∗p(
x∗

y∗
) (2.3)

and

h(
x∗

y∗
) = 0. (2.4)

Remark 2.1 In [7], [12], and [17], the numerical responseh( x
y) = s[1− β

x/y] = s(1−β y
x). Hence

h(0) does not exist.

The assumptions of system (2.2) ong(x) andp(x,y) are :

(B1) g∈C1(R+,R), g(0) > 0; there existsK > 0 such thatg(K) = 0; g′(x) < 0 for all x > 0.

(B2) p∈C1(R2
+,R+), p(0,y) = 0 for all y > 0, p(0,0) = 0 or does not exist;∂p

∂x (x,y) > 0

and ∂p
∂y (x,y)≤ 0 for all (x,y) ∈ R2

+.

The respective similar hypotheses to (A4) and (A5) are

(B3) p(x,y)+y∂p
∂y (x,y) > 0 for all (x,y) ∈ R2

+.

(B4) There exists a unique positive rest pointE∗ = (x∗,y∗) for system (2.2) where0 < x∗ < K and

y∗ > 0 satisfies
g(x∗)

p(x∗,y∗)
=

y∗

x∗
=

1
β

. (2.5)

Remark 2.2. In [2], [7], [9], and [14], the functional responsesp(x,y) = p( x
y) or m(x/y)

a+(x/y) (=
mx

ay+x)
or m(1−e−kx/y). Hencep(0,0) does not exist.
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In order to represent the merits of the ratio-dependent model, we can see the following Fig. 2

and Fig. 3 which were given by Arditi and Ginzburg [2]. Fig. 2 presents the observation of Katz

(1985). From Fig. 2(a), we see that the number of prey eaten per predator depends not only on

prey density, but also on predator density. When the data points align on a single curve, Fig. 2(b)
is much better than Fig. 2(a). Hence, it is clear that the formp( x

y) represents the data much better

than the formp(x). Fig. 3 presents the results of an experiment using a predator-prey system in a

complex environment (Bernstein, 1981). Open circles are the average of the number of prey eaten

per predator where the prey densityx is fixed at a value with the constant ratiox/y = 4. When

the numbers of prey and predators were changed with a ratio of 4 : 1, the number of prey eaten

per predator did not change significantly. Thus, the empirical data support the ratio-dependent

functional responsep( x
y).

It is not our purpose in this paper to discuss the ecological validity of such ratio-dependent

models, but to note that such ratio-dependence does lead to some mathematical problems and

therefore we study the global stability of such ratio-dependent models.

3 Global stability of a general model

For simplicity, we consider the following general model of (2.1) and (2.2)

ẋ =xg(x)−yp(x,y),
ẏ =yh(x,y),
x(0)> 0, y(0) > 0,

(3.1)

whereg(x), p(x,y), andh(x,y) satisfy

(H1) g∈C1(R+,R), g(0) > 0; there existsK > 0 such thatg(K) = 0; g′(x) < 0 for all x > 0.

(H2) p ∈ C1(R2
+,R+), p(0,y) = 0 for all y > 0, p(0,0) = 0 or does not exist;∂p

∂x (x,y) > 0 and
∂p
∂y (x,y)≤ 0 for all (x,y) ∈ R2

+.

(H3) h∈C1(R2
+,R), h(K,0) > 0 or does not exist,h(0,y) < 0 or does not exist for ally≥ 0; there

existsL > 0 such thath(x, x
L ) = 0; ∂h

∂x(x,y) > 0and ∂h
∂y(x,y)≤ 0 for all (x,y) ∈ R2

+.

The respective similar hypotheses to (A4) and (A5) are (H4)p(x,y) + y∂p
∂y (x,y) > 0 for all

(x,y) ∈ R2
+ .

(H5) There exists a unique positive rest pointE∗ = (x∗,y∗) for system (3.1) where0< x∗ < K and

y∗ > 0 satisfies
g(x∗)

p(x∗,y∗)
=

y∗

x∗
(3.2)

and

h(x∗,y∗) = 0. (3.3)
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Figure 2: A marine system studied in the field. Number of prey (barnaclesBalanus balanoides)

eaten per predator (snailsUrosalpinx cinerea) in 24·7 hr, at different prey densitiesx and predator

densitiesy. The data points align on a single curve much better when plotted against the ratiox/y

(b) than when plotted againstx (a) (data from Katz, 1985).
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Figure 3: A mite system in a heterogeneous experimental environment. Number of prey

(Tetranychusurticae) eaten per predator (Phytoseiuluspersimilis) in 24 hr, when prey and predator

densities are varied in a constant ratio of 4 : 1. There is no significant difference (after Bernstein,

1981).

Remark 3.1 (a). In [2], [7], [9], and [14], the functional responsesp(x,y) = p( x
y) or

m(x/y)
a+(x/y) (=

mx
ay+x) or m(1− e−kx/y) and the numerical responsesh(x,y) = −d + cp( x

y) or

−d+ c[ m(x/y)
a+(x/y) ] or−d+ cm(1−e−kx/y). Hencep(0,0) andh(K,0) do not exist and thex-axis is

not in the domain of system (3.1). Similarly, in [8], [12], and [17],h(0,y) does not exist for all

y > 0 and they-axis is not in the domain of (3.1), and in [2], [7], [8], [9], [12], [14], and [17],

h(0,0) does not exist and thex-axis ory-axis is not in the domain of (3.1). (b). Clearly system

(3.1) may have rest pointsE0 = (0,0) whenp(0,0) andh(0,0) exist andE1 = (K,0) whenh(K,0)
exists.

In this section we restrict our attention to the global stability of the general model (3.1). Firstly,

we study the local stability property of system (3.1) by the Hartman-Grobman theorem. Now we

compute the variational matrix of system (3.1), denoted by A, and get

A =

[
g(x)+xg′(x)−y∂p

∂x (x,y) − p(x,y)−y∂p
∂y (x,y)

y∂h
∂x(x,y) h(x,y)+y∂h

∂y(x,y)

]

.

The local stability of each rest point is determined by the eigenvaluesλ of matrix A.
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At E0 = (0,0),

A(E0) =

[
g(0) −p(0,0)

0 h(0,0)

]

.

From (H1),g(0) > 0. If p(0,0) andh(0,y) exist for ally≥ 0 thenp(0,0) = 0 andh(0,0) < 0 by

(H2) and (H3). Observably,E0 is a saddle point with the positivey-axis as its stable manifold.

At E1 = (K,0),

A(E1) =

[
Kg′(K) −p(K,0)

0 h(K,0)

]

.

From (H1), we haveg′(K) < 0. If h(K,0) exists thenh(K,0) > 0 by (H3). Clearly,E1 is a saddle

point with the positivex-axis as its stable manifold.

At E∗ = (x∗,y∗),

A∗ ≡ A(E∗)

=

[
g(x∗)+x∗g′(x∗)−y∗ ∂p

∂x (x∗,y∗) − p(x∗,y∗)−y∗ ∂p
∂y (x∗,y∗)

y∗ ∂h
∂x(x∗,y∗) h(x∗,y∗)+y∗ ∂h

∂y(x∗,y∗)

]

=

[
x∗g′(x∗)+ y∗

x∗ p(x∗,y∗)−y∗ ∂p
∂x (x∗,y∗) − p(x∗,y∗)−y∗ ∂p

∂y (x∗,y∗)
y∗ ∂h

∂x(x∗,y∗) y∗ ∂h
∂y(x∗,y∗)

]

.

A∗ has eigenvaluesλ given by

λ2− (traceA∗)λ+detA∗ = 0

where

detA∗ = y∗
∂h
∂y

(x∗,y∗)[x∗g′(x∗)+
y∗

x∗
p(x∗,y∗)−y∗

∂p
∂x

(x∗,y∗)]+

y∗
∂h
∂x

(x∗,y∗)[p(x∗,y∗)+y∗
∂p
∂y

(x∗,y∗)] (3.4)

and

traceA∗ = x∗g′(x∗)+
y∗

x∗
p(x∗,y∗)−y∗

∂p
∂x

(x∗,y∗)+y∗
∂h
∂y

(x∗,y∗) (3.5)

For stability we requireReλ < 0 and so the necessary and sufficient conditions for locally asymp-

totical stability are

detA∗ > 0 and traceA∗ < 0.

According to above three results, we can get the following lemma.

Lemma 3.2 (i) If (H1)-(H4) hold andp(0,0) andh(0,y) exist for all y≥ 0, then the rest point

E0 = (0,0) of system (3.1) is a saddle point with the positivey-axis as its stable manifold. (ii) If
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(H1)-(H4)hold andh(K,0) exists, then the rest pointE1 = (K,0) of system (3.1) is a saddle point

with the positivex-axis as its stable manifold. (iii) Let(H1)-(H5)hold. If the unique positive rest

pointE∗ = (x∗,y∗) of system (3.1) satisfies

detA∗ > 0 and traceA∗ < 0,

wheredetA∗ andtraceA∗ are defined by equations (3.4) and (3.5) respectively, thenE∗ is locally

asymptotically stable.

Next, the following lemma is a statement that system (3.1) is as ”well behaved” as an intuition

from the biological problem.

Lemma 3.3 Under assumptions(H1)-(H5), solutions of system(3.1) are positive and bounded,

and furthermore, there existsτ > 0 such thatx(t) < K for all t ≥ τ.

Proof: By Lemma 3.2(i)(ii), if h(K,0) exists (p(0,0) andh(0,y) exist for all y≥ 0) then the

rest pointE1 = (K,0) (E0 = (0,0)) is a saddle point with the positivex-axis (y-axis) as its stable

manifold. If solutions(x(t),y(t)) of system (3.1) enter the positivex-axis (y-axis) from the first

quadrant, then(x(t),y(t)) will approachE1 (E0). This implies that the stable manifold ofE1 (E0)

is not unique. So it is impossible that solutions(x(t),y(t)) of system (3.1) enter the positivex-axis

or y-axis from the first quadrant. Thus, ifx(0) > 0 andy(0) > 0 then solutions of system (3.1) are

positive.

Firstly, we claim thatx(t) is bounded for allt ≥ 0. We consider the following two cases : (I)

x(0) < K , or (II) x(0)≥ K. We discuss them as follows.

(I) If x(0) < K thenx(t) < K for all t ≥ 0, otherwise, there ist1 > 0 such thatx(t1) = K and

ẋ(t1)≥ 0. From the first equation of (3.1), (H1), and (H2), it follows that

ẋ(t1) =−y(t1)p(x(t1),y(t1)) < 0.

This contradictṡx(t1)≥ 0. That is, ifx(0) < K thenx(t) < K for all t ≥ 0.

(II) From the first equation of (3.1), (H1), and (H2), we haveẋ < 0 for all x≥ K, y > 0. That is,

x is strictly decreasing for allx≥ K , y > 0. Therefore, ifx(0) ≥ K then eitherx(t) decreases to

x̂≥ K, or there existsτ > 0 such thatx(τ) < K, which yields thatx(t) < K for all t ≥ τ, by using

the same discussion as case (I). Hencex(t) < M ≡max{K,x(0)} for all t ≥ 0.

Next, we claim thaty(t) is bounded for allt ≥ 0. We consider the following two cases : (III)

y(0) < ML−1, or (IV) y(0)≥ML−1. We discuss them as follows.

(III) If y(0) < ML−1 then y(t) < ML−1 for all t ≥ 0, otherwise, there ist2 > 0 such that

y(t2) = ML−1 andẏ(t2)≥ 0. From the second equation of (3.1) and (H3), it follows that

ẏ(t2)=y(t2)h(x(t2),y(t2))

=
M
L

h(x(t2),
M
L

) <
M
L

h(M,
M
L

) = 0.
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This contradicts tȯy(t2)≥ 0. That is, ify(0) < ML−1 theny(t) < ML−1 for all t ≥ 0.

(IV) From the second equation of (3.1) and (H3), we haveh(x,y) < 0 for all 0 < x < M, y≥
ML−1, which impliesẏ < 0 for all 0 < x < M, y≥ML−1. Therefore, ify(0)≥ML−1 then either

y(t) decreases tōy≥ML−1, or there existss> 0 such thaty(s) < ML−1, which yields thaty(t) <

ML−1 for all t ≥ s, by using the same discussion as case (III). Hencey(t) < N≡max{ML−1,y(0)}
for all t ≥ 0.

Finally, we want to show that it is impossible thatx(t) decreases tôx≥ K, and hence we have

the result that there existsτ > 0 such thatx(t) < K for all t ≥ τ. Suppose thatx(t) decreases to

x̂≥K. Sincex(t) andy(t) are positive and bounded, according to the Poincaré-Bendixson theorem,

solutions(x(t),y(t)) of system (3.1) will approach a positive rest point(x̂, ŷ), whereŷ > 0. This

contradicts (H5), and we complete the proof. 2

Remark 3.4

Lemma 2.1 in [12] is a special case of Lemma 3.3.

Finally, we have the following theorem by applying Dulac’s criterion.

Theorem 3.5 Let (H1)-(H5)hold. If detA∗ > 0 and

xg′(x)+
y
x

p(x,y)−y
∂p
∂x

(x,y)+y
∂h
∂y

(x,y) < 0 (3.6)

for all (x,y) ∈ R2
+, wheredetA∗ is defined by equations (3.4), then the rest pointE∗ = (x∗,y∗) of

system (3.1) is globally asymptotically stable in the first quadrant.

Proof: Let

f1(x,y)=xg(x)−yp(x,y),

f2(x,y)=yh(x,y).

We construct

H(x,y) = x−1y−1, x > 0, y > 0.

An easy computation yields

∂( f1H)
∂x

+
∂( f2H)

∂y

= H(
∂ f1
∂x

+
∂ f2
∂y

)+ f1
∂H
∂x

+ f2
∂H
∂y

= x−1y−1[g(x)+xg′(x)−y
∂p
∂x

(x,y)+h(x,y)+y
∂h
∂y

(x,y)]−

x−2y−1[xg(x)−yp(x,y)]−x−1y−2[yh(x,y)]

= x−1y−1[xg′(x)+
y
x

p(x,y)−y
∂p
∂x

(x,y)+y
∂h
∂y

(x,y)] < 0
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whenever

xg′(x)+
y
x

p(x,y)−y
∂p
∂x

(x,y)+y
∂h
∂y

(x,y) < 0 for all (x,y) ∈ R2
+.

Hence, if (3.6) holds then there is no periodic orbit in the first quadrant by Dulac’s criterion. From

Lemma 3.2 (iii) anddetA∗ > 0, if (3.6) holds thenE∗ is locally asymptotically stable. By Lemma

3.3 and the Poincaré-Bendixson theorem, it suffices to show that the unique positive rest pointE∗

is globally asymptotically stable in the first quadrant. 2

Remark 3.6

(a). Since

xg′(x)+
y
x

p(x,y)−y
∂p
∂x

(x,y) = x
∂ f
∂x

,

Theorem 3.5 says that if (3.1) is a self-regulating predator-prey system (that is,∂ f
∂x < 0, ∂h

∂y < 0 in

R2
+) then the rest pointE∗ = (x∗,y∗) is globally asymptotically stable in the first quadrant.

(b). Consider the following Leslie-Gower model [12] and [17]

ẋ = rx(1− x
K )−y(mx)

ẏ =y[s(1−βy
x)]

x(0)> 0,y(0) > 0,

(3.7)

where the functional responsep(x,y) = mx is of Holling-Type 1. System (3.7) is exactly a self-

regulating predator-prey system. Hence, by (a) the rest pointE∗ of (3.7) is globally asymptotically

stable in the first quadrant. Remark 2.3 in [12] had the same conclusion by constructing a Liapunov

function.

(c). The Kolmogorov model [1], [5], and [11]

ẋ =x f(x,y),
ẏ =yh(x,y),
x(0)> 0,y(0) > 0,

is a general model of (3.1), and Theorem 3.5 looks like a special case of Theorem 3 in [5]. Cheng

et al. proved Theorem 3 in [5] by the method of limit cycle stability analysis. However, the

assumptions for system (3.1) are different from the assumptions needed in Theorem 3 of [5] and

we get Theorem 3.5 by applying Dulac’s criterion.

4 Global stability of ratio-dependent models

In this section we state the principal results of the paper. Firstly, we restrict our attention

to the global stability of system (2.1). We are trying to do this by using Theorem 3.5. Here,
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p(x,y) = p( x
y)≡ p(u) andh(x,y) = h( x

y)≡ h(u), so

F(x,y) ≡ xg′(x)+
y
x

p(x,y)−y
∂p
∂x

(x,y)+y
∂h
∂y

(x,y)

=xg′(x)+
p(u)

u
− p′(u)−uh′(u)

and by (3.4), we get

detA∗ =−x∗u∗g′(x∗)h′(u∗)

where

u∗ =
x∗

y∗
.

Assume
p(u)

u
− p′(u)−uh′(u)≤ 0,

that is,

[
p(u)

u
+h(u)]′ ≥ 0

for all u > 0. Thus, from (A1) and (A3), we have

detA∗ > 0

and

F(x,y) < 0 for all (x,y) ∈ R2
+.

Hence we obtain the following theorem by Theorem 3.5.

Theorem 4.1 Let (A1)-(A5) hold. If

[
p(u)

u
+h(u)]′ ≥ 0 (4.1)

for all u > 0, then the rest pointE∗ of system (2.1) is globally asymptotically stable in the first

quadrant.

Remark 4.2 As an intuition from the biological problem, Theorem 4.1 is a statement that,

for any ratiou (prey/predator), if the sum of “the average rate of change of the feeding rate per

predator” and “the predator growth rate” is nondecreasing asu increases, then the rest pointE∗ of

system (2.1) is globally asymptotically stable in the first quadrant.

Next, we study the global stability of system (2.2) by using the method of limit cycle stability

analysis. Here,h(x,y) = s(1−β y
x). From (2.5) and (3.4)-(3.5), we obtain

detA∗ =−s{x∗g′(x∗)−y∗[
∂p
∂x

(x∗,y∗)+
1
β

∂p
∂y

(x∗,y∗)]} (4.2)
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and

traceA∗ = [xg(x)]′ |x=x∗ −y∗
∂p
∂x

(x∗,y∗)−s. (4.3)

Hence, by Lemma 3.2(iii), we have the following lemma.

Lemma 4.3 Let (B1)-(B4)hold. If detA∗ > 0 and

[xg(x)]′ |x=x∗ ≤ s,

wheredetA∗ is defined by equation(4.2), then the rest pointE∗ of the system(2.2) is locally

asymptotically stable.

We can combine Lemma 4.3 and the method of limit cycle stability analysis to get the follow-

ing theorem.

Theorem 4.4 Let (B1)-(B4) hold. IfdetA∗ > 0 and

[xg(x)]′ ≤ s (4.4)

for all x > 0, wheredetA∗ is defined by equation(4.2), then the rest pointE∗ of system(2.2) is

globally asymptotically stable in the first quadrant.

Proof: It suffices to show that system (2.2) has no closed orbit in the first quadrant. Suppose there

is aT−periodic orbitΓ = {(x(t),y(t))| 0≤ t ≤ T}.
Compute

∆=
Z T

0
{ ∂

∂x
[p(x,y)(

xg(x)
p(x,y)

−y)]+

∂
∂y

[p(x,y)(
sy

p(x,y)
(1−β

y
x
))]}

∣∣∣∣ x = x(t)
y = y(t)

dt

=
Z T

0
{[ xg(x)

p(x,y)
−y]

∂p
∂x

(x,y)+

p(x,y)
∂
∂x

[
xg(x)
p(x,y)

]+

[
sy

p(x,y)
(1−β

y
x
)]

∂p
∂y

(x,y)+

p(x,y)
∂
∂y

[
sy

p(x,y)
(1−β

y
x
)]}

∣∣∣∣ x = x(t)
y = y(t)

dt.

From (2.2), and
dp(x,y)

dt
=

∂p
∂x

(x,y)
dx
dt

+
∂p
∂y

(x,y)
dy
dt
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it follows that

0=
Z T

0

1
p(x(t),y(t))

dp(x(t),y(t))

=
Z T

0
{[ xg(x)

p(x,y)
−y]

∂p
∂x

(x,y)+

[
sy

p(x,y)
(1−β

y
x
)]

∂p
∂y

(x,y)}
∣∣∣∣ x = x(t)

y = y(t)

dt

and

0=
Z T

0

1
y(t)

dy(t) =
Z T

0
s(1−β

y
x
)
∣∣∣∣ x = x(t)

y = y(t)

dt.

Hence we have

∆=
Z T

0
{p(x,y)

∂
∂x

[
xg(x)
p(x,y)

]+

p(x,y)
∂
∂y

[
sy

p(x,y)
(1−β

y
x
)]}

∣∣∣∣ x = x(t)
y = y(t)

dt

=
Z T

0
{g(x)+xg′(x)− [

xg(x)
p(x,y)

]
∂p
∂x

(x,y)−s+

2s(1−βy
x)− [ sy

p(x,y) (1−βy
x)]∂p

∂y
(x,y)}

∣∣∣∣ x = x(t)
y = y(t)

dt (4.5)

=
Z T

0
{ [xg(x)]′−y

∂p
∂x

(x,y)−s}
∣∣∣∣ x = x(t)

y = y(t)

dt.

From (B2) and (4.4), it follows that

∆ < 0.

This indicates that all periodic orbits of system (2.2) in the first quadrant are orbitally stable.

Since every periodic orbit is orbitally stable then there is a unique stable limit cycle in the first

quadrant. That is,E∗ is unstable. However, by (4.4),detA∗ > 0, and Lemma 4.3,E∗ is locally

asymptotically stable. Thus, there is no periodic orbit in the first quadrant. By Lemma 3.3 and the

Poincaŕe-Bendixson theorem, it suffices to show that the unique positive rest pointE∗ is globally

asymptotically stable in the first quadrant. 2

Remark 4.5 Theorem 4.4 says that, for any locally asymptotically stable rest pointE∗ of (2.2),

if the instantaneous rate of change of the recruitment rate (or harvesting rate) of the prey in the
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absence of predators with respect to prey densityx is not greater than the intrinsic growth rates

of the predator, thenE∗ is globally asymptotically stable in the first quadrant.

For the system (2.2) withp(x,y) = p(x), (4.2) and (4.3) becomes

detA∗ =−s[x∗g′(x∗)−y∗p′(x∗)] > 0

and

traceA∗ = p(x∗)
[

xg(x)
p(x)

]′∣∣∣∣
x=x∗

−s

respectively, and we have the following corollary by (4.5).

Corollary 4.6 Consider the system(2.2) with p(x,y) = p(x) and let(B1)-(B4)hold. If

Q(x)≤ 0 for all x > 0,

where

Q(x) = p(x)
[

xg(x)
p(x)

]′
−s

andQ(x) is not identically zero, then the rest pointE∗ is globally asymptotically stable in the first

quadrant.

Remark 4.7 In [12], Hsu and Huang analyzed the global stability of system (2.2) withp(x) = mx
A+x

or mx2

(A+x)(B+x) by Dulac’s criterion,H(x,y) = ( mx
A+x)

−1y−2 or [ mx2

(A+x)(B+x) ]
−1y−2 and got Theorem

3.2(i) and Theorem 4.2(i) in [12] which are special cases of Corollary 4.6 (The more detailed

statement will be given in Remark 5.4).

Remark 4.8 When we consider system (2.2) and construct

H(x,y) = y−2, x > 0, y > 0,

as we did in Theorem 3.5, we have the same result as Theorem 4.4.

5 Examples

We now illustrate the above results by means of two examples.
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Example 5.1 Consider the ratio-dependent functional response model in [7] and [14]

ẋ = rx(1− x
K

)−y(
mx

ay+x
),

ẏ = y[−d+c(
mx

ay+x
)], (5.1)

x(0) > 0,y(0) > 0,

which is a special case of system (2.1). We note that hypotheses (A1)-(A4) are satisfied when

cm−d > 0.

From (2.3) and (2.4), it follows that

x∗ =
(acr−cm+d)K

acr
,

y∗ =
(cm−d)(acr−cm+d)K

a2cdr
.

We observe that (A5) holds when

acr−cm+d > 0.

We can get the global stability property of (5.1) by Theorem 4.1. Sincep(u) = mu
a+u andh(u) =

−d+c( mu
a+u), (4.1) becomes

G(u)≥ 0,

where

G(u) =
m(ac−1)
(a+u)2 .

We note thatG(u)≥ 0 for all u > 0 if and only if

ac≥ 1.

On the other hand, if we construct

H(x,y) = x−2y−1, x > 0, y > 0,

then, as we did in Theorem 4.1, we get the following sufficient condition (5.2) which is different

from the condition (4.1)

−r +
2p(u)

u
− p′(u)−uh′(u) < 0. (5.2)

We can verify that (5.2) is satisfied for the model (5.1) if and only if

ar−m≥ 0



130

Hence we have the following property.

Remark 5.2

(a). Sufficient conditions for the global stability of (5.1) are : Supposecm−d > 0, acr−cm+d >

0, and one of the following three conditions is satisfied:
(i) ac≥ 1,

(ii) ar−m≥ 0,

Then the rest pointE∗ of model (5.1) is globally asymptotically stable in the first quadrant.

(b). The local stability analysis of the rest pointE∗ of model (5.1) was done in [14]. In [7] the

authors showed that ifacr+d > cm then model (5.1) is persistent.

Example 5.3 Consider the logistic ratio-dependent model in [7], [12], and [17]

ẋ = rx(1− x
K )−y( mx

a+x),
ẏ =y[s(1−βy

x)],
x(0)> 0,y(0) > 0,

(5.3)

which is a special case of system (2.2). It is easy to verify that (B1)-(B4) are satisfied.

Hence, as we did in Example 5.1, we obtain the following property by Corollary 4.6.

Remark 5.4 (a). Sufficient conditions for the global stability of model (5.3) are :

If either

(i) ar +Ks−Kr ≥ 0

or

(ii) ar +Ks−Kr < 0 and(ar +Ks−Kr)2−8aKrs≤ 0,

then the rest pointE∗ of model (5.3) is globally asymptotically stable in the first quadrant.

(b). The local stability analysis of the rest pointE∗ of model (5.3) was done in [12] and [17].

Furthermore, the authors [12] analyzed the global stability property of model (5.3) by Dulac’s

criterion (H(x,y) = ( mx
a+x)

−1y−2) and got the same conclusion as (a). In [7] the authors showed

that model (5.3) is persistent.

6 Conclusion

In this paper, we have focused on predator-prey systems with ratio-dependence. It is our main

purpose to obtain the global stability properties of such ratio-dependent models (2.1) and (2.2).

It is a well-know fact that the local stability of a rest point in a predator-prey system does
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not necessarily imply its global stability. We have presented sufficient conditions for the global

stability of (2.1) and (2.2) by the application of Dulac’s criterion or the method of limit cycle

stability analysis . The ecological reasons for incorporating ratio-dependence into predator-prey

systems have been argued elsewhere. It is not our purpose to enforce these arguments, but rather to

give sufficient conditions under which each unique positive rest point of such systems is globally

asymptotically stable in the first quadrant when they are used.
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何肇寶*    林坤祥* 

摘    要 

本篇論文主要在研究具有比率相關之捕食系統的整體穩定性。我們利用 Poinecaré-Bendixson
定理及 Dulac準則、極限環穩定分析法等兩種方法，得到上述系統的整體穩定性之充分條件。 

 
關鍵詞：整體穩定性、捕食系統、比率相關。 

 

                                                                                                                                                             
* 東海大學數學系 

具有比率相關之捕食系統的整體穩定性 


