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The Influence of Time Delay on Local Stability for
a Predator-Prey System

Chao-Pao Ho∗ Yuei-Liang Ou∗

Abstract

The aim of this paper is to study the influence of time delay on local stability for a predator-prey
system. We first discuss the local stability of the system without delay. Then we study the change of the
local stability of the predator-prey system with a single delay. Finally, we conclude with an example.
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1 Introduction

Predator-prey models have been studied for a long time. Many researchers either have no con-
cern with time delays or tend to ignore delays in their models. Such a common practice generally
works. However, it is not true without qualification. More realistic models should include some
of the past states of the population systems; that is, ideally, a real system should be modeled with
time delays.

Although concern for time delays in population models dates back to the 1920s, when Volterra
[10,11] investigated the predator-prey model, the momentum did not pick up until the last three
decades. Starting from Hutchinson’s [6] delay logistic equation, May [9] has proposed the follow-
ing system

ẋ1(t) = rx1(t)
[

1−
x1(t − τ)

K

]
−mx1(t)x2(t)

ẋ2(t) = −dx2(t)+ cx1(t)x2(t)
(1.1)

where x1 and x2 are density of prey and predator, respectively, and r, τ, K, m, d, c are positive
constants. If we think the gestation period of predator is τ, then the per capita growth rate function
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should carry a time delay τ, which results in (1.1). Here, we are trying to analyze the possible
influence of delays on the stability of this system.

Most studies on time-delay systems start from the local stability analysis of some special
solutions. For this purpose, the standard approach is to analyze the stability of the linearized
systems about the special solution. By a similar technique as is utilized in [7], we can easily
determine the delay margins for stability of the linearized form of the system (1.1).

We will use the characteristic equation of the linearized form of the system (1.1) to obtain
the intervals of delay value for which the linearized system is stable. The stability of the trivial
solution (i.e., the zero solution) of the linearized system depends on the location of the roots of
the associated characteristic equation. As the length of delay changes, the stability of the trivial
solution may also change. Such phenomena are often referred to as stability switches [1,3,8].

The main purpose of this paper is to analyze the possible influence of delays on the stability of
the system (1.1). Firstly, we analyze the stability of the system (1.1) without time delay (i.e.,τ = 0).
In section 3, we use the above two methods to obtain the delay margins and intervals for stability
with a single delay. In section 4, we illustrate our results by one example.

2 The Model without Delay

Consider the following predator-prey system

ẋ1(t) = rx1(t)
[

1−
x1(t)

K

]
−mx1(t)x2(t)

ẋ2(t) = −dx2(t)+ cx1(t)x2(t)
(2.1)

where r, K, m, d, c are positive constants, and Kc > d, x1 and x2 represent the prey population
and the predator population, respectively.

Clearly, E0 ≡ (0,0) and EK ≡ (K,0) are equilibrium points of the system (2.1). Since Kc > d,
there is an unique positive equilibrium point

E∗ ≡ (x∗1,x
∗
2) ≡

(
d
c
,

r (Kc−d)

mKc

)

in the first quadrant for the system (2.1). To understand the local behavior of the system (2.1),
firstly we discuss the stability of the equilibrium points in the system (2.1) by the Hartman-
Grobman theorem. Secondly, we use the Poincaré-Bendixson theorem to show that the global
stability of E∗.

Now let us study the stability of the system (2.1) at equilibrium points E0, EK and E∗. The
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Jacobian of (2.1) takes the form

A =




r−
2r
K

x1 −mx2 −mx1

cx2 −d + cx1




At E0

A0 =

[
r 0
0 −d

]

Since det(A0) = −rd < 0, the equilibrium point E0 is a saddle point with the x2-axis as its stable
manifold and the x1-axis as its unstable manifold.

At EK

AK =

[
−r −mK

0 −d + cK

]

Since −r < 0, −d + cK > 0 and det(AK) < 0, the equilibrium point EK is a saddle point with the
x1-axis as its stable manifold.

At E∗

A∗ =




−
rd
Kc

−
md
c

r (Kc−d)

mK
0




Since

trace(A∗) = −
rd
Kc

< 0

det(A∗) =
rd (Kc−d)

Kc
> 0

therefore the equilibrium point E∗ is locally asymptotically stable.
Before mention Lemma 2.1 we need the following notation(see Figure 1). Let

Γ = {(x1(t),x2(t)) : x1(0) = K,x2(0) = x̂2 > x∗2, t ≥ 0}

Γ1 = {(x1(t),x2(t)) : x1(0) = K,x2(0) = α, t ≥ 0}

Γ2 = {(x1(t),x2(t)) : x1(0) = K,x2(0) = β, t ≥ 0}

where α < x̂2 < β and say p1 ≡ (K, x̂2). Thus we know that ẋ2 is positive, negative and zero as
x1 > x∗1, x1 < x∗1 and x1 = x∗1, respectively. Therefore, there is a point (x∗1,γ) ≡ p2 ∈ Γ such that the
solution (x1(t),x2(t)) ∈ Γ with x2(t) ≤ γ for all t ≥ 0.

Lemma 2.1 All solutions (x1(t),x2(t)) of the system (2.1) are positive and bounded. That is, any

solution (x1(t),x2(t)) of the system (2.1) will enter into a positive and bounded region Ω, where

the region Ω is bounded by x1 = 0, x1 = K, x2 = 0, x2 = γ and the curve p̂1 p2 (See Figure 1).
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Figure 1: p1 = (K, x̂2), p2 = (x∗1,γ)

Proof. Firstly, we want to show that all solutions (x1(t),x2(t)) of the system (2.1) are positive.
That is, if (x1(0),x2(0)) is in the first quadrant then (x1(t),x2(t)) is also in the first quadrant for
all t > 0. If not, there is a t1 > 0 such that (x1(t1),x2(t1)) is equal to the point (x1,0) or (0,x2)

which belong to the x1-axis or x2-axis. But this contradicts the fact that the positive x1-axis and
the positive x2-axis are the unique stable manifold of EK and E0, respectively.

Secondly, we want to show that all solutions (x1(t),x2(t)) of the system (2.1) are bounded.
In the first quadrant, we know that ẋ1 is negative for all x1 ≥ K; x2 > 0. Hence, for all solutions
(x1(t),x2(t)) of the system (2.1) with initial point (x1(0),x2(0)) and x1(0) ≥ K, there exists s > 0
such that x1(t) < K for t ≥ s.

It is easy to show that the orbit Γ1 is contained in the region Ω, because the orbits Γ1 and Γ
cannot cross at any point except the unique equilibrium point E∗ = (x∗1,x

∗
2). Let A be the region

which is bounded by x1 = 0, x1 = x∗1 and x2 > r
m (1− x1

K ) (See Figure 2). The orbit Γ2 starts at
(K,β) and will enter into the region A since ẋ2 is positive, negative and zero as x1 > x∗1, x1 < x∗1
and x1 = x∗1, respectively. By the slope of the trajectory in the region A (See Figure 2), the orbit Γ2

finally will enter into the region Ω, too. If not, it will run into the x2-axis. But this contradicts the
fact that the positive x2-axis is the unique stable manifold of E0.

Then following theorem to assure the global stability of the equilibrium point E∗ in the system
(2.1).

Theorem 2.2 If Kc > d, then the unique positive equilibrium point E∗ of the system (2.1) is glob-

ally asymptotically stable.
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Figure 2: The slope of trajectory shown in the region A, where A is the region which is bounded
by x1 = 0,x1 = x∗1 and x2 > r

m (1− x1
K )

Proof. Let

H(x1,x2) =
1

x1x2
, x1 > 0, x2 > 0

Then

∂
∂x1

H
{

rx1

[
1−

x1

K

]
−mx1x2

}
+

∂
∂x2

H {−dx2 + cx1x2}

=
∂

∂x1

[
r
x2

(
1−

x1

K

)
−m

]
+

∂
∂x2

[
−

d
x1

+ c
]

= −
r

Kx2
< 0

Hence by the Dulac’s criterion, there is no closed orbit in the first quadrant. From above, we see
that E∗ is locally asymptotically stable. By Lemma 2.1 and the Poincaré-Bendixson theorem, it
suffices to show that the unique positive equilibrium point E∗ is globally asymptotically stable in
the first quadrant.
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3 The Model with a Single Delay

Consider the following predator-prey system with a single delay [9]

ẋ1(t) = rx1(t)
[
1− x1(t−τ)

K

]
−mx1(t)x2(t)

ẋ2(t) = −dx2(t)+ cx1(t)x2(t)

(3.1)

where x1 and x2 are density of prey and predator, respectively, and r, τ, K, m, d, c are positive
constants. Clearly, the equilibrium points of the system (3.1) are the same as in the system (2.1).

We can use the techniques in [2,4,5,12] to check the boundedness and the point-wise posi-
tiveness of the solutions of (3.1) with the nonnegative initial value function φ ∈ C with positive
components. Here our main purpose is to find the delay margins for local stability of the system
(3.1) and analyze the stability switches of the linearized system of (3.1).

In order to understand the locally asymptotical stability of the equilibrium point E∗ in (3.1),
we analyze the associated linearized system with the perturbations u = (u1,u2)

u̇1(t) = −
rx1

∗

K
u1(t − τ)−mx∗1u2(t)

u̇2(t) = cx∗2u1(t)
(3.2)

where

u1(t) = x1(t)+ x∗1

u2(t) = x2(t)+ x∗2

Hence, analyzing the local stability of E∗ in the system (3.1) is equivalent to analyzing the stability
of the zero solution in the system (3.2).

Before we mention our results we consider the n-th order real scalar linear neutral delay dif-
ferential equation:

n

∑
k=0

aky(k)(t)+
n

∑
k=0

bky(k)(t − τ) = 0 (3.3)

where y(0) ≡ y(t). Thus the stability analysis of (3.3) is equivalent to the problem of determining
conditions under which all roots of its characteristic equation

n

∑
k=0

akλk +

(
n

∑
k=0

bkλk

)
e−λτ = 0 (3.4)

lie in the left of the complex plane and are uniformly bounded away from the imaginary axis.
Without loss of generality, we assume an = 1.

Theorem 3.1 [8] If |bn| > 1, then, for all τ > 0, there is an infinite number of roots of (3.4) whose

real parts are positive.
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An immediate consequence of this theorem is the following:

Theorem 3.2 [8] If |bn| > 1, then the trivial solution of (3.3) is unstable for all τ > 0.

Finally, we will quote a theorem in [7] to compute delay margins for stability of linear delay
systems. Consider

y(n)(t)+
n−1

∑
j=0

q

∑
k=0

ak jy( j)(t − kτ) = 0 (3.5)

where ak j, k = 0,1, ...,q, j = 0,1, ...,n−1 are given real constants, and τ ≥ 0 is a delay constant.

Theorem 3.3 [7] Suppose that the system (3.5) is stable for τ = 0. Let Hn ≡ 0, Tn ≡ 0, and

H j ≡




aq j aq−1 1 · · · a1 j

0 aq j · · · a2 j
...

...
. . .

...

0 0 · · · aq j




, Tj ≡




a0 j 0 · · · 0
a1 j a0 j · · · 0

...
...

. . .
...

aq−1 j aq−2 j · · · a0 j




, j = 0,1, ...,n−1,

Pj ≡

[
(i) jTj (i) jH j

(−i) jHT
j (−i) jT T

j

]
, j = 0,1, ...,n.

Furthermore, define

P ≡




0 I · · · 0
...

...
. . .

...

0 0 · · · I

−P−1
n P0 −P−1

n P1 · · · −P−1
n Pn−1




Then the delay margin τ∗ = ∞ if σ(P)∩R− = Ø or σ(P)∩R+ = {0}. Additionally, let

F(λ) ≡




0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
−a0(λ) −a1(λ) · · · −aq−1(λ)




,

G(λ) ≡ diag(1 · · · 1 aq(λ))

Then the delay margin τ∗ = ∞ if σ(F(iωk),G(iωk))∩∂D = Ø for all 0 6= ωk ∈ σ(P)∩R+. In these

cases, the system (3.5) is stable for all τ ∈ [0,∞). Otherwise,

τ∗ ≡ min
1≤k≤2nq

αk

ωk

where 0 6= ωk ∈ σ(P)∩R+ and αk ∈ [0,2π] satisfy the relation e−iαk ∈ σ(F(iωk),G(iωk)). The

system (3.5) is stable for all τ ∈ [0,τ∗) and is unstable at τ = τ∗.



54

Now, we will mention our results.

Theorem 3.4 If Kc > d, then E∗ is stable for all τ ∈ [0,τ∗), and becomes unstable at τ = τ∗, where

τ∗ =
π/2
ω+

,

and ω+ > 0 satisfies

ω2
± =

1
2

{[(
rx∗1
K

)2

+2mcx∗1x∗2

]

±



((

rx∗1
K

)2

+2mcx∗1x∗2

)2

−4(mcx∗1x∗2)
2




1
2




. (3.6)

Proof. We can rewrite the system (3.2) as a delay differential equation

ü2(t)+
rx∗1
K

u̇2(t − τ)+mcx∗1x∗2u2(t) = 0 (3.7)

Thus the characteristic equation is obtained as

λ2 +
rx∗1
K

λe−λτ +mcx∗1x∗2 = 0 (3.8)

First, we want to determine the stability of the zero solution of (3.7) with τ = 0. When τ = 0
then the characteristic equation (3.8) becomes

λ2 +
rx∗1
K

λ+mcx∗1x∗2 = 0

and it is easy to show that the zero solution of the system (3.7) is stable with τ = 0 by checking
the roots in the open left half plane.

Compare equation (3.7) with equation (3.5), now q = 1, n = 2. Hence using Theorem 3.3 we
obtain readily

a0(λ) = λ2 +mcx∗1x∗2 and a1(λ) =
rx∗1
K

λ

Then

P =




0 0 1 0
0 0 0 1

mcx∗1x∗2 0 0 i
rx∗1
K

0 mcx∗1x∗2 i
rx∗1
K

0




.

So σ(P) = {±ω+,±ω−}, where ω± > 0 satisfy (3.6). Then

σ(P)∩R− = {−ω±} and σ(P)∩R+ = {ω±} 6= {0}.
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Furthermore, we have

F(λ) = −a0(λ) and G(λ) = a1(λ).

Thus
σ(F(iω±),G(iω±)) = {−i, i}= {e−iπ/2,e−i3π/2}

Hence
τ∗ =

π/2
ω+

.

Therefore, by Theorem 3.3, we know that the zero solution of the system (3.2) is stable for all
τ ∈ [0,τ∗), and that it becomes unstable at τ = τ∗.

Finally, we want to discuss the stability of the zero solution of the system (3.2) whenever
τ > τ∗.

Theorem 3.5 If Kc > d, then the stability of E∗ of the system (3.1) changes a finite number of

times (Suppose k times.) as τ is increased, and eventually it becomes unstable. And k switches

from stability to instability to stability occur when the parameters are such that

τ0,1 < τ0,2 < τ1,1 < τ1,2 < · · · < τk−1,1 < τk−1,2 < τk,1 < τk+1,1 < · · ·

Here

τn,1 =
π/2
ω+

+
2nπ
ω+

, and τn,2 =
3π/2
ω−

+
2nπ
ω−

,

where n = 0,1,2, · · ·; and ω± > 0 satisfy the equation (3.6).

Proof. The characteristic equation of (3.2) is the same as (3.8). Suppose λ = iω, ω > 0, is a root
of (3.8) for some τ (Since mcx∗1x∗2 6= 0, ω 6= 0). So we have

rx∗1
K

ωsinωτ = ω2 −mcx∗1x∗2
rx∗1
K

ωcosωτ = 0
(3.9)

Then

ω4 −

[(
rx∗1
K

)2

+2mcx∗1x∗2

]
ω2 +(mcx∗1x∗2)

2 = 0 (3.10)

Thus its roots satisfy (3.6), that is,

ω2
± =

1
2

{[(
rx∗1
K

)2

+2mcx∗1x∗2

]

±



((

rx∗1
K

)2

+2mcx∗1x∗2

)2

−4(mcx∗1x∗2)
2




1
2




.
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Now, we need to determine the sign of the derivative of Re λ(τ) at the points where λ(τ) is
purely imaginary. From (3.8), we have

{
2λ+(1− τλ)

rx∗1
K

e−λτ
}

dλ
dτ

= λ2 rx∗1
K

e−λτ

For convenience, we study
(

dλ
dτ

)−1

instead of
dλ
dτ

. Then

(
dλ
dτ

)−1

=
2λeλτ +

rx∗1
K (1−λτ)

rx∗1
K λ2

=
2λeλτ +

rx∗1
K

rx∗1
K λ2

−
τ
λ

and from (3.8) we know

eλτ =
−

rx∗1
K λ

λ2 +mcx∗1x∗2
So

(
dλ
dτ

)−1

=
−λ2 +mcx∗1x∗2

λ2 (λ2 +mcx∗1x∗2)
−

τ
λ

Therefore,

sign
{

d (Reλ)

dτ

}

λ=iω
= sign

{
Re(

dλ
dτ

)−1
}

λ=iω

= sign
{

Re
[

−1
λ2 +mcx∗1x∗2

]

λ=iω
+Re

[
mcx∗1x∗2

λ2 (λ2 +mcx∗1x∗2)

]

λ=iω

}

= sign
{

−1
−ω2 +mcx∗1x∗2

+
mcx∗1x∗2

ω4 −mcx∗1x∗2ω2

}

= sign
{

ω4 − (mcx∗1x∗2)
2
}

= sign

{
ω4 +ω4−

(
rx∗1
K

)2

ω2 −2mcx∗1x∗2

}

= sign

{
2ω2 −

[(
rx∗1
K

)2

+2mcx∗1x∗2

]}
(3.11)

By inserting the expression for ω2
±, it is seen that the sign is positive for ω2

+ and negative for
ω2
−. Therefore, crossing from left to right with increasing τ occurs for values of τ corresponding

to ω+ and crossing from right to left occurs for values of τ corresponding to ω−. From equations
(3.6) and (3.9), we obtain the following two sets of values of τ for which there are imaginary roots:

τn,1 =
π/2
ω+

+
2nπ
ω+

, and τn,2 =
3π/2
ω−

+
2nπ
ω−

,
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where n = 0,1,2, · · · .

We observe that

τn+1,1 − τn,1 =
2π
ω+

<
2π
ω−

= τn+1,2 − τn,2

where n = 0,1,2, · · · .

Therefore, there can be only a finite number of switches between stability and instability.
Moreover, it is easy to see that there exist values of the parameters that realize any number of such
stability switches. However, there exists a value of τ, τ = τ̂, such that at τ = τ̂ a stability switch
occurs from stable to unstable, and for τ > τ̂ the solution remain unstable.

As τ is increased, the multiplicity of roots of (3.8) for which Reλ > 0 is increased by two
whenever τ passes through a value of τn,1, and it is decreased by two whenever τ passes through
a value of τn,2. The k switches from stability to instability to stability occur when the parameters
are such that

τ0,1 < τ0,2 < τ1,1 < τ1,2 < · · · < τk−1,1 < τk−1,2 < τk,1 < τk+1,1 < · · ·

Here τ̂ = τk,1.

Hence, we can see that the the value τ∗ in Theorem 3.4 is the same as τ0,1 in Theorem 3.5.

4 Example

In this section, we illustrate our result by one example.

Example 4.1

ẋ1(t) = 0.8x1(t)
[

1−
x1(t − τ)

100

]
−0.4x1(t)x2(t)

ẋ2(t) = −0.9x2(t)+0.1x1(t)x2(t)
(4.1)

Comparing the system (4.1) with the system (3.1), we get r = 0.8, K = 100, m = 0.4, d = 0.9 and
c = 0.1. So

E∗ = (x∗1,x
∗
2) = (9,1.82) ,

and the linearized system of (4.1) is

u̇1(t) = −0.072u1(t − τ)−3.6u2(t)

u̇2(t) = 0.182x1(t)
(4.2)

Then using the same technique as in section 3, we have 5 stability switches, and for τ > τ5,1 the
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solution remain unstable. Here

τ0,1 ≈ 0.5908π, τ0,2 ≈ 1.9374π
τ1,1 ≈ 2.9542π, τ1,2 ≈ 4.5205π
τ2,1 ≈ 5.3176π, τ2,2 ≈ 7.1037π
τ3,1 ≈ 7.6810π, τ3,2 ≈ 9.6869π
τ4,1 ≈ 10.0444π, τ4,2 ≈ 12.2700π
τ5,1 ≈ 12.4078π, τ5,2 ≈ 14.8532π
τ6,1 ≈ 14.7711π,

Finally, we show some figures of its trajectory with some values of τ by MATLAB.

Figure 3: 0 < τ = 1 < τ0,1 ,x1(0) = 8 and x2(0) = 2. Figures (a) and (b) show that the trajectory
of x1 and x2, respectively. It means that E∗ is stable.
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Figure 4: τ ≈ τ0,1 ,x1(0) = 8 and x2(0) = 2. Figures (a) and (b) show that the trajectory of x1 and
x2, respectively. It means that E∗ is unstable.
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Figure 5: τ0,1 < τ = 2 < τ0,2 ,x1(0) = 8 and x2(0) = 2. Figures (a) and (b) show that the trajectory
of x1 and x2, respectively. It means that E∗ is unstable.
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時滯參數對捕食系統之局部穩定性的影響 
 

何肇寶*    歐岳良* 

摘    要 

本篇文主要在研究時滯參數 τ 的大小是否會改變捕食系統 

)()()()(

)()(
)(

1)()(

2122

21
1

11

txtcxtdxtx

txtmx
K
txtrxtx

+−=

−



 −
−=

τ
 

的局部穩定性。 
 

關鍵詞：局部穩定性，穩定性切換。 
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