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|sthe Inverse Square Law an Optimal Controller
from Nature? What isthe Action?

Huang-Nan Huarig Ciann-Dong Yan@

Abstract

The usual way in developing the formulation for classicakhamics is to define the Lagrangian for
the action first and then the equation of motion is obtaineddigg calculus of variation to minimize the
action. If we recognize the inverse square law being an @btiontroller presented by nature, what is the
corresponding action (or Lagrangian) for it? First of alplanar motion of two bodies is considered. An
optimal control problem is then formulated with a presumaldnown Lagrangian. By using Pontryagin
minimal principle to minimize the action, a partial diffetéal equation for the Lagrangian is obtained and
solved. For this action, it can be verified directly that theerse square law is the corresponding optimal
controller. Finally, the generalization of this mechati@a is presented for more complicated dynamical
systems. This type of problem is considered as an inverdggumofrom the optimal control theory point
of view.

Keywords: inverse square law, Lagrangian, Pontryagin minimal ppiecioptimal control,
inverse problem
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1 Introduction

“Everything happens as if matter attracts matter in direopprtion to the products of masses
and in inverse proportion to the square of the distances”.

This famous proposition of Newton’s “Principia”(1687) waslecisive step in our understand-
ing of the Universe. It describes the law of universal atteecwhich also known as thiaverse
square lawin gravity field. Two point masselgl andm are separated by the distancand are
attracted by each other, see Figure 1. The nfMigxperiences the forde, > and the mase the

opposite force 1:

GMm
IFe2ll = [F2all = =
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Figure 1: The law of universal attraction

whereG is the Newtonian constant which is equal t6 B2x 10~ n? /s’kg. Newton demonstrated
that the forced; » andF, 1 remain the same if the masskbsandm have spherical symmetry
instead of being point massesl{eing the distance between centers). And the motion of point
masses is derived based on the calculus of variation or tealtedHamilton’s principle

Beside the gravity field, point sources of electric fieldhtigsound or radiation also obey the
inverse square law. The inverse square law has long beegmrizea as the fundamental law in
nature which can only be verified experimentally but can'tdeeived from other nature laws.
Regarding to this point, a question has been asked in [6Ih8ge any special meanings inherent
in inverse square law?” or in another way, “Is inverse sqlerethe outcome of some optimal
action taken by nature?” Motivated by the assumption of Matyis (1698-1759) who claimed
that all the phenomena of nature can be derived by minimiaimgiantity called “action”, the
present paper attempts to “derive” inverse square law frowpimal control sense. We also note
that this Maupertuis’s assumption is commonly associai#ftive principle of least action today.

The least action principle is the condition that the act®stationary under small variations
around the optimal orbit when the initial and final positicare fixed and the Hamiltonian is
constant along the optimal and varied orbits. Although theetintegral of the Lagrangian in
the “Hamilton’s principle” also is very commonly called thetion, these two principles do not
coincide (for detail, see Goldstein [4]). In optimal cortieeory, the action is called cost function
or performance index. Thus the least action principle iseqhie same as the minimal principle in
control literature.

As a result, our answer to the previous question is that g&vequare law is truly a least action
taken by nature to minimize some “action”. This paper is oigad as follows. In section 2,
our main tool: the minimal principle of Pontryagin is reviesdv Then the previous question is
formulated into an inverse optimal control problem in seetB. Section 4 presentes our main
results. The Lagrangian in the action related to inversaisglaw will be derived first by solving
analytically a second-order partial differential equatithen we show that the optimal control law
minimizing the action is exactly the inverse square law. ®Bgting inverse square law as a special
example in section 5, we further generalize the formulatigive a necessary condition under
which an arbitrary nature law can be considered the optimairol law manipulated by nature.
Some concluding remarks are given in final section.
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2 Preiminaries

In this section, the Pontryagin Minimal Principle is revemhfor later use. We use bold letter
to denote vector or matrix and the symifofor real number system.
Consider the nonlinear system

x =f(x,u) (2.1)

with x € R" andu € R™, such that
u(t) eU c RM. (2.2)

Lettp andts > tg be given, and assume

X(to) =Xo,  X(tf) =Xt (2.3)
Define the cost
tf
J(x,u,ts) = / L(x,u) dt (2.4)
fo
whereL is a smooth function
L:R"xU —R.

We callL theLagrangian A typical optimal control problem is to find (if possible)eivaluets,
the control Iawuﬁoytﬂ, the state trajectory’{tom which satisfy the differential constraint (2.1), the
constraints (2.3) and (2.4) and minimize the cost (2.4).sTpe of problem can be solved by
calculus of variation or Pontryagin minimal principle [1,3

Theorem 2.1 (Pontryagin Minimal Principle) Let (x*,u*,tf) be an admissible solution of the
considered optimal control problem. Let

H(x,u,Ao,A) = AoL(x,u) + ATf(x,u) (2.5)

Then(x*,u*,tf) is an optimal solution only if there exist a constagt> 0 and a(vectoy function
A*(t) € R", not simultaneously zero on any time instaat]to, t], such that, for all t [to,t¢], one
has

Ao , (2.6)

0x (¢, U A5 NF)
H(x*, u,A5A") > H(X*,u*,A§,A"), Vuel, 2.7
H(x*, u*, A5, A%) = 0. (2.8)

Moreover, discontinuities in" occur only at the time instantsn whichu* is discontinuous.
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Remark 2.2 Equation (2.6) is called thadjoint equationor costate equation Thus, the
Lagrange multiplierA is also known agostate The inequality (2.7) expresses the so-called
minimum principle Without loss of generality, we can assuivje= 1.

Remark 2.3 If the final timet; is fixed, equation (2.8) has to be replaced by
H(x*,u* AgA") =k, keR (2.9)

i.e., the functiorH (x*,u*,A§,A") is constant, but not necessarily zero, fortad! [to,tf].

Remark 2.4 If the final state is not fixed and the cost includes a term deipgron the final state,
ie., .
f
Jix,u,ts) = [ L(x,u)dt+G(ts,x(tr))

fo
then, as the boundary conditiotits) = X; is no more applicable, we need to specify other
boundary conditions. In this case, these are

0G(t,x)
()4

(x*,ut tf)

N (tr) =Xg

Remark 2.5 Condition (2.7) is a condition of minimum for the function
H (X, U, A0, A) = AoL(x,u) +ATf(x, u)

If no constraints on the control are present, this conditiarst be substituted by the (obvious)

condition
oH

- —o. (2.10)
ou (x*, U A\

3 Problem Formulation

Consider the motion of a system consisting of two bodiesctdfitby a force directed along
the line connecting the centers of the two bodies. We résttiour attention to systems without
friction losses and for which the potential energy is a fiorcbnly of their distance. According
to the standard technique in classical mechanics, thislgmolsan be formally reduced to an
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equivalent one-body problem in which only the motion of artjgée” of massm in the central
field described by the potential functidh(r) wherer is the distance to the original as shown in
Figure 2.

r+dr
de

Figure 2: The trajectory(t) of a moving particle in the planar motion

The system satisfies the following assumption:

Assumption 1 (Conservation of Angular Momentum) The total angular momentum of the sys-
tem is constant.

Based on this assumption, the trajectory of the particlessta the same plane [2]. The angular
momentum of this system is denoted by

mrlo = ¢,

or equivalently,
: L
0=— 3.1
e (3.1)
where/ denotes the total angular momentum of this system. The oaats@n of angular momen-

tum required be a constant or

d

Bl = 2
il 8=0 (3.2)
The trajectory of the particleis governed by the differential equationsriand® directions,

respectively,

mi—mre? = u (3.3a)

m(2(0+rf) = 0 (3.3h)

whereu denotes the control force. The gravity fongeis equal to the gradient of the potential
functionU (r) in the gravity filed, i.e.

Fir) — _ 9/ Ky_ K
u(r)anr< r> r2
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with a constanK. Our purpose is to show that this unique for¢ewith its magnitudeK /r?
(satisfying the inverse square law) can be recognized aptamal controller introduced by nature
to minimize certain action.

Since the left hand side (LHS) of (3.3b) can be rewritten as

m(2r6+r@) = %% (mr@)

and by the conservation of angular momentum (3.3b) holdsnKB.1) the independent variable
in (3.3a) can be changed franto 6. Now, by using (3.1) it follows that

dr dr do ¢ dr ¢d /1
a%‘am%aﬂ?) (3.42)
¢ _dgdrydo 2 dd /1y 2 @1y
dt2  do\dt) dt  mrzdede\r/  mPr2dez \r '
and the substitution of (3.1) and (3.4) into (3.3a) leads to
2 [d 1\ 1
e [@ <F> + F] =-u (3:5)

Leta=m/(?, x; = 1/r andx, = dx;/d8 = —m¥ /¢, then the equation (3.5) can be expressed as a
system of first order nonlinear differential equations

de_
dxo a
99 = Y (3.6b)

1

For convenience, we use above prime to denote the derivaiiligespect td, i.e.,x; = dx;/d6
andx,, = dxp/d6. The corresponding optimal controller is given by

thus, we can recognizeas a function depending on the variabtggandx,. If the planetary motion
is limited forr € [ro, o) for some positive constang, the variablex; andx, can be considered
belongs to a closed bounded domBiin R?. Thusu belongs to the admissible set

U ={ue Cc}D,R): (3.6) is stablg

where ¢! denotes the class of functions having continuous first odeevatives. And we may
ask the following question:

Problem 1 What is the corresponding decision principle made by natorehoose t(xy, x2) =
—Kx2 from all admissible functions U?
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From the optimal control theory point of view, we suggest thare is an cost function to be
minimized for decision purpose. Thus we make the followisgLaption.

Assumption 2 (Action Functional) There exists a Lagrangian(k;, xz,u) such that the mecha-
nism of nature for gravity is to minimize the following actifunctional

(u) = /O " L(x(8), %2(8), u(xa(8), x2(6)))d® 3.7)

This action functional (u) is also known aghe actionfor simplicity. And then the following
guestion needs to be answered:

Problem 2 What does the Lagrangian(k;, xz,u) look like? What is the corresponding physical
meaning of the action?

In next section, Pontryagin Minimal Principle is adopte@itswer these questions.

4 Main Results

The corresponding variational problem is to find a functido minimize

¢

I(u)= A L(x1(8),%2(8),u(x1(8),x2(0))) dB (4.2)

subjected to
% = X2, Xl(O) = X10 (4.28.)
%—’g — (x1+ X%u) . %(0) = X0 (4.2b)

HereB; is considered to be free. L& andA, be Lagrange multipliers (or costate) andhtbe
the Hamiltonian associated with the optimization probleen,

a
H (X17X27)\17)\2; U) = L(Xl; X2, U) + )\lXZ - )\2 (Xl + Pu) (43)
1

Then the constraint optimization problem becomes as tomii@ the augmented cost
-0¢
J(X1,X2,U) = / (H(x2,%2,A1,A2,U) — A1xg — A2xX5) 06, (4.4)
0

with x1(0) = x10 andx2(0) = xz0 from all possibleu in the admissible sdfi. Since there is no
other constraint on controller, we can use Pontryagin Minimal Principle to solve this peoiol
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The corresponding optimal controllet must satisfy

oH oL a
—| =—| —=5A2=0 4.5
ul, oul, »7? (4-3)
which leads to 5 5
x4 oL X7 oL
No=221""| 271 4.6
>~ adu G aou* (4.6)

On the other hand{ is not an explicit function 06 and by direction computation we obtain

dH

o =0

u*

— a_H +a_H +6_Hu/+a_H)\/+a_H/
“\ax t o 2 du O LN, 2

u*
along the optimal trajectory. Therefore without loss of gelity we arrive zero Hamiltonian
function along the optimal trajectory

H* = H(xg,X2,A1,A2,U") = L* + Axo — A2(xg —aK) =0 4.7)

whereL* = L(xg,%p,uU*). The combination of (4.5), (4.6), and (4.7) gives us

A= X_]; [—L* + (Xl — aK))\z] (48)

Before doing further, we need to compute the following datiixes first along the optimal
trajectory. The total derivative of the optimal conttdlis given by

d , u*
38Y (X1, %2) = a—xlx’l = —2KX1X2
and those of.* andoL /ou* are
d . oL* or , _oL* oL*
%L = a_X]_X&+ a—XZX/z—XzaXl 7(leaK) 6x2
d /oLy AL N %L . 0°L i ak) %L
dé \ au* x0u LT ddu 2T Paxaur Xa0U*

At the meanwhile); andA; for optimal trajectory must satisfy the adjoint equations

d\ oM oL
do - axl o axl

+A2 (4.9

Sincel’ could also be computed by

dh _ oH
a6~ ox

u*

it follows that
oLr oL

oxy  oxq

u*



Similarly,
dAz oH* oL* o 1 .,
B oe e M e gl M
and
o _ oL
aX2 o 6xz u*
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(4.10)

But the termsdA1/d6 anddA2/d6 can also be obtained by differentiating (4.8) and (4.6)pees

tively. Thus we arrive at

d)\l - X’z . 1 dL* d)\z
e ,X%H + 0 —ak)hg + - [ gg Trare+ (—aK) g
xp—aK 1 oL’ oL*
_ X% [L — (Xl - aK))\z] + X |:X2 %1 + (Xl* aK> aX2:|
1 dA
Hha+ = (x —aK) =2 (1)
5 doe
and
dh2 2x1x’1£+x_§i oL
de a ou* ado\odu*
2 2 3 2
_ 2X1%2 OL XiX2 0L _ ﬁ—i—u* oL (4.12)
a 0x10u* a

a ou* 0xo0Uu*
SincedA1/d6 in (4.11) can be rewritten as

o
e oxg

+A2+

xi—aK[dh oL 1
do aX2 X2

(L — (%1 — aK))\z)]

which is the same as (4.9) after using the equation (4.10j).tHeotermdA1/d6, the right hand
sides (RHS) (4.10) and (4.12) must equal each other whidsleathe relationship

0 - 2axe oL X%y 0°L % o 0°L
- a dur a 0x0ur a OX20U*
oL* 1
— — ZL* = (xg—aK)A
% XZ[ (x1—aK)Az
or equivalently,
aL* 1 oL
—L* = (53 + 2xx3
+X26X2 +a( 1+ 2xx5 +au’) 3
202 A2 2
X2x3  0°L o 0°L
S~ - (2 =0
a 0xp0u* a +u XZaXZau*

Thus the action function is the solution of this partial ifntial equation.
We can recapitulate as follows:
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Lemma4.1 The optimal Lagrangian Lfor the least action of the system (4.2) imposed by the
controller u* = —Kx% is the solution of the following partial differential equa:

Lo 1 ) oL
L g +5(x§+2x1x2+au*) S
22 32 2
X2x3  0°L o 0°L
_ (4 =0 4.13
+ a 0xp0u* a+u XZaXZau* ( )

Although the existence and uniqueness of the solution faB{s not clear, we could still find
its solution in the following way. Rewrite (4.13) into thelfaving form:

oL*
= —L 4.14
0 + X2 % ( a)
2 2
X1X5 oL 0L
+ a (zau* +X16x16u* (4.14b)
3 2
X; L\ /oL oL
+ < a +u > (au* XZaXZau*> (4.14c)

Therefore, a special subset of solutions can be found byidemsg parts (b) and (c) in (4.14) to
be zeros, i.e.,

PN L _ 10 (p0L)
ou ' taxgour | xgoxg \ tour )
oL L ,0 (10L) |
aur Coxeour 20% \ X 0u* )

Thus, we suggeglL/du* to be of the form
oL oL X2
= — = —_ R
ou*  u |, Clx%’ Cre
it follows that
oL

X —
= Clx—§ +Ca(x1, Xz, u) (U— ")

Ju 7

Integrating about gives us

X —
L(X1,X%2,u) = Clx—§ (U—U*) + Co(%q, X2, U) (U— U*)2 + Cg(X1, X2)
1

whereC, andCs are unknown functions to be determined. Substitutirigack into the part (a) in
(4.14) leads to

-~ C3  ,0 (1=
—C3(X1,X2) +X26_X2 = X26_X2 (X—2C3) =0

i.e., we can choosBz(x;,x2) = X2C3(x1). Since the value of; will not affect the optimization
process, choos®; = 1 for simplicity. Therefore the Lagrangian may have the form

X
L(X1,X2,U) = X—g (u—u") 4+ Co(x1,%2,u)(U— u*)2 + %2C3(x1) (4.15)
1
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Thus the action functional is given by

I(u)= /Oef (i—%(u—u*)+Cz(x1,xz,u)(u—u*)2+sz3(x1)) de (4.16)

We have the following result:

Theorem 4.1 Let G(x1,X%2,u) be a nonnegative function. Suppose there exists a mininhad va
for action functional

o /x
|@»:A (éw+KﬁHCdmmzmw+Kﬁf+mQ@ﬂ)w (4.17)

1

subjected to the system
dx
d_el =X, x1(0) = X10,
dx a
o (X1+ X—%U) ; X2(0) = X20,

then the corresponding controller is given by
2
u* = —Kxj
Moreover, the least action is

I* = minl (U) = C4(x;(8+)) — Ca(x0)

ueu

where G is an antiderivative of gand
X1(8) = X20SiN6 + (X10— aK) cosB + aK.

Proof: LetA; andA; be the associated Lagrange multipliers, the Hamiltoniathie optimization
problem is given by

X
H (X1, %o, U,A1,A2) = X—;(U+ Kx§) + Ca(x1, X, U) (U+ KX§)? + X2C3(x1)
1

a
+A1X2 — A2 (Xl + —ZU)
X1
Let (xj,%5,u",A],A3) be the admissible solution, it follows thait must satisfy

oH X3 a
e =5 5M=0, (4.18)
ou X*Z X*Z 2

MU ANy X X

(X3,%5) is the solution of

dx
de

dx ,oa ,
E - — (X1+ XT:LZU ) 3 X2(O) == X20, (419b)

= X3, X1 (0) = xq0, (4.19a)
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and(A3,A%) is the solution of adjoint equation

dA; oH 2a .\ . (2K .
del —-= = <173” >)\2x2 <7 +C§(xl)>, (4.20a)
XL (x: x5.u% A3 A3) X X
A H
dhy__H — Ca(X) L. (4.20b)
A6 0%l g Ay
and
X*
H(X1,%5,U",AL,A3) = XTZZ(U* +Kx;2) 4+ Ca (X3, X5, U") (U + KX3%)2 + X5C3(X} )
1
Kk * * a
FADG — A (xl+ —u )
Xy
Now,

H(X1,%2,U,A1,A2) — H (X1, X0, U™, A1, A7)
= [Co(x. %, U) (u+Kx)? — Ca(xg, 3, U") (U* + Kx§)?]
= Co(X},%5,u)(u+Kx3)2 — Co(xX5, X5, U™ (U* + Kx3)?
From Pontryagin Minimal Principle, the condition
H(X, %5, U N AS) — H(XG, X5, u" A5, A5) >0,  Yuel,
leads to the unique optimal control law
Ut = —Kxg
for all nonnegative functio@,. Substituting the optimal control law intdx;, X2, u) gives us
L* = L(X],%5,u) = x5C3(X])

Therefore, the least action is

_ 6 Xi(81)
I* = minl (u) = /O X5Ca(x,)d8 = / 7 Ca(xa)dxe = Ca(X; (81)) — CalX0)
X

ueU 10

whereC, is an antiderivative o€3. The optimal trajectory in (4.19) is computed by
d|xx| | 0 1 Xi 0
o x| | -1 0| x aK

X1(8) = X208iNB + (X10— aK) cosb + ak, (4.21a)
X5(8) = X20€0s0 + (aK — X10) Sind. (4.21b)

+

with its solution
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This concludes our proof. O
Furthermore, we discuss some properties of Theorem 4 4tlyifor u* = —Kx*l‘2 the Hamil-

tonian along the optimal trajectory is given by
H(X7,%5,U",AT,A5) = X5 (AT +C3(X])) — A5 (X} —aK) =0 (4.22)

And using (4.22) the optimal costate (4.20) becomes

d .. . .
%[)\1+C3(X1)] = Az
;. X
e a’
with its solution
: oy~ KXo (%0
Ni(8)+Calxi(6) = 2—K="Z sin6 -+ ( - K) cos+ak, (4.23a)
) X3(8) _ Xe0 X10\
A5(0) = cosﬂ+(K— - )sme. (4.23b)

This solution is as same as computed by using (4.18) and)(4F28m (4.21) and (4.23) we see
that the optimal state and costate are periodic functiotispériod 21, i.e.,

X(2NTD = x10,  Ni(2NT) + Ca(xi (2NT) = %0 K,

X5 (2NT) = Xp0,  AS(2NT) = X—;O
for all integerN.

Next, from Theorem 4.1, the only condition on the functionis it must be nonnegative.
And the selection of3 function will not affect the optimal control law and the apal trajectory.
Once we choose certain type of function @, the optimal costatg; is determined according to
(4.23a).

Thirdly, the meaning of the action functionlatan be clarified more clearly. Sintecan be
expressed as

B¢ Bt
"= = / H (X, %, u*,)\’{,)\z)de—/ (N +A5x5') de
0 0
and with the aid of (4.22) we arrive at

I*

]
_ / (A + A de
0
B¢ -O¢
= = [ I+ (0)+ N O]+ [ Cal) i (8)
Comparing with Theorem 4.1 leads to

0t
| i+ Cax))ax (6)+ Az (8) 0. vy,
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Let
E (X1, %) — /()\1+Cs(x1))dx1+)\2dxz

then we have

dE O0E , OE,,
96 = —6X1X’1+ —aXZX'z = (A +Ca(xa))Xg +A2%

ie.,

oE X1

= s

P 1+Cs(x1) a ,

oE X2

SR V.

0xo 2 a

Solving these two partial differential equations gives us

102
E(X1,%) = EE(x%—irxg) —Kxq (4.24)

after using use the relatian= m/¢2. Therefore for alB; the optimal control law* = —Kx2 (i.e.,
the inverse square law) is to keep the functiohe constant along the optimal trajectory

E(X;(01),%5(8¢)) = E(X10,X20) = E(constant.

What is the physical meaning &f? After introducing the notationg =1/r,x = % % ¢ =mr28,
and (3.4a) the functiok can be expressed as

1211 [d1)\? 1 1 .. 1 ., K
EE[E*<%F)]KFEWG+EW?

hencek is the total energy of the system with
E=T(r,r)+U(r)

in which

. 1 . 1 .
T(ri) = Emr2+ Emrze2

is the kinematic energy andi(r) = —K/r is the potential energy of the gravity field. The optimal
control lawu* for least action is used by nature to keep the total energybainstant along the
optimal orbit of motion . Therefore, we have the followingietusion.

Conclusion 1 From optimal control theory point of view, the conservataithe total energy is
automatically ensured by the inverse square law.

The result is consistent with what we have learn from classiechanics [4,5]. Thus when a new
physical fact is observed from experiment, the inversenagiticontrol problem gives us the way
to deal with the principle behind.
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The following remarks the present study can also be conddicien Hamilton-Jacobi-Bellman
(HJB) equation.

Remark 4.2 The results in Lemma 4.1 and Theorem 4.1 for arbitérgould also be obtained
by solving the stationary HIB equation:

ol* a ol*
L+ x— — [ X+ —U" | =—
* 20x1 ( 1t X;2 ) 0Xo

= min<L(Xy,X2,U) + X or _ X+Eu o =0
T ueu 172 2 9%, ! X ) oxe )

with

9 L(x1,%2,U) + X o _ x+iu o
EITR et Zox T2 ) oxg

1 u*

5 Generalization for a Dynamical System

In previous section, the Lagrangian for least action to tlwion of a particle must satisfy
a second order partial differential equation. The corradpw optimal controller is really the
inverse square law in gravity field. Within this section titisa is generalized to treat a dynamical
system.

Consider a system with degrees of freedom possessesjuations of nonrelativistic motion:

ql = fl(qlv' -3 0n, Ug, .. 'aum)v
: (5.1)

qn = fn(ql,- -3 0n, Ug, .. 'aum)v
whereu;, 1 <i < mbe the internal or external forces to the system (which isgaized as the
control input). For this system, tleptimal control problenis to find an optimal control force

U =u'(du,...,0n), i=12,....m
such that the action .
f
[(u)= /o L(g,..-,0n,U1,...,Un,t)dt

is minimized withg; andu; satisfying the constraint (5.1).

Suppose some experiments have been conducted such thatdbe 6f the system are mea-
sured with the following relationship:

U =u(d,...,0n), i=12...,m (5.2)
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whereu)’s are known functions depending on the generalized coatéguy, . ..,q,. As before,
it ask: “Is there exists a Lagrangi&fi(du, ..., qn,us,...,Um,t) such that the admissible solution
u’ in the optimal control problem is equal t§ for all i?” Hereu? represents the physical law
in nature. Once there exists such functlon the lawue is the outcome of least action taken by
nature.

The HamiltoniarH for this optimization is given by

n

H = L(ql,...,qn,Ul,...,Um,t)+ Z)\jfj(ql,...,qn,Ul,...,Um) (53)
=1

whereAj, 1 < j < nare the Lagrange multipliers. The optimal control law masissy

oH 0
OUi |y .
or equivalently,
% +i)\-% =0 (5.4)
FHug,. U =1 (U, Uf)

A vector notation is adopted for simplicity. Denote the éaling symbols

-
T L
T
U:{Ul Um} , )\:{)\1 )\n}a
%:[o_L a_L]T a_H:[a_H a_H}T (5.5)
du au; dUm ©aq 00y 0 ’
ofr . Ofn
()U]_ 6U1
of;
=54 =]
Ui i) o, oy
Then (5.4) can be rewritten as
oL oL
0=— J(f AE — 1 I(f,u")A 5.6
u|, IS ST I (5.6)
The corresponding optimal state is given by
q="f(q,u*) =1, (5.7)

and the corresponding Hamiltonian is

H* =L(q,u",t)+ATf(q,u*) =L +ATf =0 (5.8)
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whereL* is used to denotk(qg,u*,t). And the costate is the solution of

Mg T

respectively. Our purpose is to combine (5.6), (5.7), andl)(§0 as to obtain a partial differential
equation containing* as its unknown.
Firstly, we differentiate the first term in (5.6) to obtain

d oL 02 oL \'. oAU oL \'.,
dtow w1 (Wq> 9= 50 Y (Wq> f (.10

and for second term to obtain

S IEUIN) = I(EUA -+ 2 I(Eu)
= ot G+ (G- 3003 ) (5.11)

Then the derivative of (5.6) with respect to time is

doL d

0= FTEITE + gt [J(f,u™)A] (5.12)
Substitution of equations (5.10) and (5.11) into (5.12) 8
2L oL \'., N
0 = —atau*+J(W’q) f*—J(f,u") 2
(G- 300360 ) (513)

Whenm = n and supposé(f,u*) be nonsingular, from (5.6) it follows that

oL

A =-=J(f,u") W (5.14)
and (5.13) becomes a second-order partial differentisdeéou forL*:
o2 oL \' oL*
— = o= f* _ f *
0 6t6u*+J<6u*’q) I 5

— (% [J(f)u*)] _J(f5U*)J(f*,q)) J(fJJ*)*l%

On the other hand, when# n or J(f, u*) with m= n be singular, the costate should be eliminated
by using (5.6) and (5.8). We recapitulate the above disonsss following theorem:

Theorem 5.1 Consider the dynamical system

q="f(q,u), 9(0)=qo (5.15)
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driven by a known control force®(q) whereq, u € R" and the Jacobian matrix(f,u) is defined

by
ofp .. of
()U]_ 6U1
of;
=54 =]
Ui J i) ot o,

The Lagrangian E(q,u,t) for least action principle with optimal control law* = u° is the solu-
tion of the following partial differential equation

2L oL \'., L oL
- atau*+J<W’q) P05,
d } e oq 0L
- (G030 ) 3w (5.16)

provided thatd(f,u*) = J(f,u)

.+ I8 nonsingular, where

oL oL

f*=1f(q,u”), - au

u*

Example 5.2 Find the Lagrangiah such that the function* = —2x is the optimal control law
to minimize

I(u) = /O " Lix udt

subjected to the dynamical system

with x(t), u(t) € R.
Comparing the notation presented in this section, we have

f(x,u) =x+u,
and of of
J(f,U):%:]_, ‘](f7X>:&:17

Along the optimal trajectory it follows that
J(f,u) =1 f*=-x J(f*,x)=-1,

and ) 5
d.. . L o oL
(B =0 555 =0 IGEY =50

Thus (5.16) becomes

aL* L aL
= + +

0 0x Xaxau* ou*
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and it can be rewritten as follows

o _ L oL
T9x  Ox \aur
0 [, ., udL

- x(v-%a)

Thus the Lagrangian must satisfy

3

u>od L

————| =0C4 (constant
2 0uu?| .

with all possible solution given by

C

L(x,u) = C1(X,u)(u— U*)? + Co(X)u? + u—g
whereC; andC, are arbitrary functions. Therefore a simplest solutioh (g u) = u?, and by
direct verification the corresponding optimal control lami = —2x.

6 Conclusions

Our paper provides the answer for the question: “Is the seeguare law in gravity field the
outcome of some optimal action taken by nature?” As moti/biethe assumption of Maupertuis,
we take the action as time integral of some unknown Lagrareyia recognize the inverse square
law in gravity field as an optimal control law for the motion pérticles ensured by Newton’s
Second Law. As the result of applying Pontryagin Minimalniple, the unknown Lagrangian
must satisfy a second-order partial differential equatiod some of its solution has been analyti-
cally constructed. There are infinitely many Lagrangiartsols corresponds to the same optimal
control law. For all these Lagrangian’s we have shown thataptimal control law minimizing
the action is exactly the inverse square law. And the miratiin process is to maintain the level
of total energy along the “least action” trajectory with@hiange. At the meanwhile, this least
action trajectory is a periodic orbit of periodt2 Furthermore, we generalize the formulation to
give a necessary condition for Lagrangian under which aitrari nature law can be considered
the optimal control law manipulated by nature.

There are topics for further study e.g., to answer: “Is tlveiise square law in electromagnetic
field also the outcome of some least action taken by natune®V/bat is the action corresponding
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to an optimal control law - inverse square law in the combamedf gravity and electromagnetic
fields?” This paper also raises an new research directimerse problem in mathematical opti-
mization or optimal control theory.
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