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Is the Inverse Square Law an Optimal Controller

from Nature? What is the Action?

Huang-Nan Huang∗ Ciann-Dong Yang†

Abstract

The usual way in developing the formulation for classical mechanics is to define the Lagrangian for

the action first and then the equation of motion is obtained byusing calculus of variation to minimize the

action. If we recognize the inverse square law being an optimal controller presented by nature, what is the

corresponding action (or Lagrangian) for it? First of all, aplanar motion of two bodies is considered. An

optimal control problem is then formulated with a presumed unknown Lagrangian. By using Pontryagin

minimal principle to minimize the action, a partial differential equation for the Lagrangian is obtained and

solved. For this action, it can be verified directly that the inverse square law is the corresponding optimal

controller. Finally, the generalization of this mechanization is presented for more complicated dynamical

systems. This type of problem is considered as an inverse problem from the optimal control theory point

of view.

Keywords: inverse square law, Lagrangian, Pontryagin minimal principle, optimal control,

inverse problem

PACS: 46.90.+s, 0..3.20.+i, 0.3.65.Ob, 11.10.Ef

1 Introduction

“Everything happens as if matter attracts matter in direct proportion to the products of masses

and in inverse proportion to the square of the distances”.

This famous proposition of Newton’s “Principia”(1687) wasa decisive step in our understand-

ing of the Universe. It describes the law of universal attraction which also known as theinverse

square lawin gravity field. Two point massesM andm are separated by the distancer and are

attracted by each other, see Figure 1. The massM experiences the forceF1,2 and the massm the

opposite forceF2,1:

‖F1,2‖ = ‖F2,1‖ =
GMm

r2
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Figure 1: The law of universal attraction

whereG is the Newtonian constant which is equal to 6.672×10−11m2/s2kg. Newton demonstrated

that the forcesF1,2 andF2,1 remain the same if the massesM andm have spherical symmetry

instead of being point masses (r being the distance between centers). And the motion of point

masses is derived based on the calculus of variation or the so-calledHamilton’s principle.

Beside the gravity field, point sources of electric field, light, sound or radiation also obey the

inverse square law. The inverse square law has long been recognized as the fundamental law in

nature which can only be verified experimentally but can’t bederived from other nature laws.

Regarding to this point, a question has been asked in [6]: “Isthere any special meanings inherent

in inverse square law?” or in another way, “Is inverse squarelaw the outcome of some optimal

action taken by nature?” Motivated by the assumption of Maupertuis (1698-1759) who claimed

that all the phenomena of nature can be derived by minimizinga quantity called “action”, the

present paper attempts to “derive” inverse square law from an optimal control sense. We also note

that this Maupertuis’s assumption is commonly associated with the principle of least action today.

The least action principle is the condition that the action is stationary under small variations

around the optimal orbit when the initial and final positionsare fixed and the Hamiltonian is

constant along the optimal and varied orbits. Although the time integral of the Lagrangian in

the “Hamilton’s principle” also is very commonly called theaction, these two principles do not

coincide (for detail, see Goldstein [4]). In optimal control theory, the action is called cost function

or performance index. Thus the least action principle is quite the same as the minimal principle in

control literature.

As a result, our answer to the previous question is that inverse square law is truly a least action

taken by nature to minimize some “action”. This paper is organized as follows. In section 2,

our main tool: the minimal principle of Pontryagin is reviewed. Then the previous question is

formulated into an inverse optimal control problem in section 3. Section 4 presentes our main

results. The Lagrangian in the action related to inverse square law will be derived first by solving

analytically a second-order partial differential equation, then we show that the optimal control law

minimizing the action is exactly the inverse square law. By treating inverse square law as a special

example in section 5, we further generalize the formulationto give a necessary condition under

which an arbitrary nature law can be considered the optimal control law manipulated by nature.

Some concluding remarks are given in final section.
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2 Preliminaries

In this section, the Pontryagin Minimal Principle is reviewed for later use. We use bold letter

to denote vector or matrix and the symbolR for real number system.

Consider the nonlinear system

ẋ = f(x,u) (2.1)

with x ∈ R
n andu ∈ R

m, such that

u(t) ∈U ⊂ R
m. (2.2)

Let t0 andt f > t0 be given, and assume

x(t0) = x0, x(t f ) = x f (2.3)

Define the cost

J(x,u,t f ) =
∫ t f

t0
L(x,u) dt (2.4)

whereL is a smooth function

L : R
n×U → R.

We callL theLagrangian. A typical optimal control problem is to find (if possible) the valuet∗f ,

the control lawu∗
[t0,t∗f ]

, the state trajectoryx∗[t0,t∗f ]
which satisfy the differential constraint (2.1), the

constraints (2.3) and (2.4) and minimize the cost (2.4). This type of problem can be solved by

calculus of variation or Pontryagin minimal principle [1,3].

Theorem 2.1 (Pontryagin Minimal Principle) Let (x∗,u∗,t∗f ) be an admissible solution of the

considered optimal control problem. Let

H(x,u,λ0,λ) = λ0L(x,u)+ λT f(x,u) (2.5)

Then(x∗,u∗,t∗f ) is an optimal solution only if there exist a constantλ∗
0 ≥ 0 and a(vector) function

λ∗(t) ∈ R
n, not simultaneously zero on any time instant t∈ [t0,t f ], such that, for all t∈ [t0,t f ], one

has

λ̇∗
= −

∂H
∂x

∣

∣

∣

∣

(x∗,u∗,λ∗0,λ
∗)

, (2.6)

H(x∗,u,λ∗
0,λ

∗) ≥ H(x∗,u∗,λ∗
0,λ

∗), ∀u ∈U, (2.7)

H(x∗,u∗,λ∗
0,λ

∗) = 0. (2.8)

Moreover, discontinuities iṅλ∗
occur only at the time instants̄t in whichu∗ is discontinuous.
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Remark 2.2 Equation (2.6) is called theadjoint equationor costate equation. Thus, the

Lagrange multiplierλ is also known ascostate. The inequality (2.7) expresses the so-called

minimum principle. Without loss of generality, we can assumeλ∗
0 = 1.

Remark 2.3 If the final timet f is fixed, equation (2.8) has to be replaced by

H(x∗,u∗,λ∗
0,λ

∗) = k, k∈ R (2.9)

i.e., the functionH(x∗,u∗,λ∗
0,λ

∗) is constant, but not necessarily zero, for allt ∈ [t0,t f ].

Remark 2.4 If the final state is not fixed and the cost includes a term depending on the final state,

i.e.,

J(x,u,t f ) =

∫ t f

t0
L(x,u) d t+G(t f ,x(t f ))

then, as the boundary conditionx(t f ) = x f is no more applicable, we need to specify othern

boundary conditions. In this case, these are

λ∗(t f ) = λ∗
0

∂G(t,x)

∂x

∣

∣

∣

∣

(x∗,u∗,t∗f )
.

Remark 2.5 Condition (2.7) is a condition of minimum for the function

H(x,u,λ0,λ) = λ0L(x,u)+ λT f(x,u)

If no constraints on the control are present, this conditionmust be substituted by the (obvious)

condition

−
∂H
∂u

∣

∣

∣

∣

(x∗,u∗,λ∗0,λ
∗)

= 0. (2.10)

3 Problem Formulation

Consider the motion of a system consisting of two bodies affected by a force directed along

the line connecting the centers of the two bodies. We restricted our attention to systems without

friction losses and for which the potential energy is a function only of their distance. According

to the standard technique in classical mechanics, this problem can be formally reduced to an
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equivalent one-body problem in which only the motion of a “particle” of massm in the central

field described by the potential functionU(r) wherer is the distance to the original as shown in

Figure 2.
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Figure 2: The trajectoryr(t) of a moving particle in the planar motion

The system satisfies the following assumption:

Assumption 1 (Conservation of Angular Momentum) The total angular momentum of the sys-

tem is constant.

Based on this assumption, the trajectory of the particle stays on the same plane [2]. The angular

momentum of this system is denoted by

mr2θ̇ = `,

or equivalently,

θ̇ =
`

mr2
(3.1)

where` denotes the total angular momentum of this system. The conservation of angular momen-

tum requires̀ be a constant or
d
dt

mr2θ̇ = 0 (3.2)

The trajectory of the particlem is governed by the differential equations inr andθ directions,

respectively,

mr̈ −mrθ̇2 = u (3.3a)

m(2ṙθ̇+ rθ̈) = 0 (3.3b)

whereu denotes the control force. The gravity forceu∗ is equal to the gradient of the potential

functionU(r) in the gravity filed, i.e.

u∗(r) = −OU = −
∂
∂r

(

−
K
r

)

= −
K
r2
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with a constantK. Our purpose is to show that this unique forceu∗ with its magnitudeK/r2

(satisfying the inverse square law) can be recognized as an optimal controller introduced by nature

to minimize certain action.

Since the left hand side (LHS) of (3.3b) can be rewritten as

m(2ṙθ̇+ rθ̈) =
1
r

d
dt

(

mr2θ̇
)

and by the conservation of angular momentum (3.3b) holds. From (3.1) the independent variable

in (3.3a) can be changed fromt to θ. Now, by using (3.1) it follows that

dr
dt

=
dr
dθ

·
dθ
dt

=
`

mr2
dr
dθ

= −
`

m
d
dθ

(

1
r

)

(3.4a)

d2r
dt2

=
d
dθ

(

dr
dt

)

·
dθ
dt

= −
`2

m2r2

d
dθ

d
dθ

(

1
r

)

= −
`2

m2r2

d2

dθ2

(

1
r

)

(3.4b)

and the substitution of (3.1) and (3.4) into (3.3a) leads to

`2

mr2

[

d2

dθ2

(

1
r

)

+
1
r

]

= −u (3.5)

Let a = m/`2, x1 = 1/r andx2 = dx1/dθ = −mṙ/`, then the equation (3.5) can be expressed as a

system of first order nonlinear differential equations

dx1

dθ
= x2 (3.6a)

dx2

dθ
= −x1−

a

x2
1

u (3.6b)

For convenience, we use above prime to denote the derivativewith respect toθ, i.e.,x′1 = dx1/dθ
andx′2 = dx2/dθ. The corresponding optimal controller is given by

u∗ = −
K
r2 = −Kx2

1

thus, we can recognizeu as a function depending on the variablesx1 andx2. If the planetary motion

is limited for r ∈ [r0,∞) for some positive constantr0, the variablesx1 andx2 can be considered

belongs to a closed bounded domainD in R
2. Thusu belongs to the admissible set

U = {u∈ C
1(D,R) : (3.6) is stable}

whereC
1 denotes the class of functions having continuous first orderderivatives. And we may

ask the following question:

Problem 1 What is the corresponding decision principle made by natureto choose u∗(x1,x2) =

−Kx2
1 from all admissible functions U?
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From the optimal control theory point of view, we suggest that there is an cost function to be

minimized for decision purpose. Thus we make the following assumption.

Assumption 2 (Action Functional) There exists a Lagrangian L(x1,x2,u) such that the mecha-

nism of nature for gravity is to minimize the following action functional

I(u) =
∫ θ f

0
L(x1(θ),x2(θ),u(x1(θ),x2(θ)))dθ (3.7)

This action functionalI(u) is also known asthe actionfor simplicity. And then the following

question needs to be answered:

Problem 2 What does the Lagrangian L(x1,x2,u) look like? What is the corresponding physical

meaning of the action?

In next section, Pontryagin Minimal Principle is adopted toanswer these questions.

4 Main Results

The corresponding variational problem is to find a functionu to minimize

I(u) =

∫ θ f

0
L(x1(θ),x2(θ),u(x1(θ),x2(θ))) dθ (4.1)

subjected to

dx1

dθ
= x2, x1(0) = x10 (4.2a)

dx2

dθ
= −

(

x1 +
a

x2
1

u

)

, x2(0) = x20 (4.2b)

Hereθ f is considered to be free. Letλ1 andλ2 be Lagrange multipliers (or costate) and letH be

the Hamiltonian associated with the optimization problem,i.e.,

H(x1,x2,λ1,λ2,u) = L(x1,x2,u)+ λ1x2−λ2

(

x1 +
a

x2
1

u

)

(4.3)

Then the constraint optimization problem becomes as to minimize the augmented cost

J(x1,x2,u) =

∫ θ f

0

(

H(x1,x2,λ1,λ2,u)−λ1x
′
1−λ2x

′
2

)

dθ, (4.4)

with x1(0) = x10 andx2(0) = x20 from all possibleu in the admissible setU . Since there is no

other constraint on controlleru, we can use Pontryagin Minimal Principle to solve this problem.
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The corresponding optimal controlleru∗ must satisfy

∂H
∂u

∣

∣

∣

∣

u∗
=

∂L
∂u

∣

∣

∣

∣

u∗
−

a

x2
1

λ2 = 0 (4.5)

which leads to

λ2 =
x2

1

a
∂L
∂u

∣

∣

∣

∣

u∗
,

x2
1

a
∂L
∂u∗

(4.6)

On the other hand,H is not an explicit function ofθ and by direction computation we obtain

dH
dθ

∣

∣

∣

∣

u∗
=

(

∂H
∂x1

x′1 +
∂H
∂x2

x′2 +
∂H
∂u

u′ +
∂H
∂λ1

λ′
1 +

∂H
∂λ2

λ′
2

)
∣

∣

∣

∣

u∗
= 0

along the optimal trajectory. Therefore without loss of generality we arrive zero Hamiltonian

function along the optimal trajectory

H∗ = H(x1,x2,λ1,λ2,u
∗) = L∗ + λ1x2−λ2(x1−aK) = 0 (4.7)

whereL∗ = L(x1,x2,u∗). The combination of (4.5), (4.6), and (4.7) gives us

λ1 =
1
x2

[−L∗ +(x1−aK)λ2] (4.8)

Before doing further, we need to compute the following derivatives first along the optimal

trajectory. The total derivative of the optimal controlu∗ is given by

d
dθ

u∗(x1,x2) =
∂u∗

∂x1
x′1 = −2Kx1x2

and those ofL∗ and∂L/∂u∗ are

d
dθ

L∗ =
∂L∗

∂x1
x′1 +

∂L∗

∂x2
x′2 = x2

∂L∗

∂x1
− (x1−aK)

∂L∗

∂x2

d
dθ

(

∂L
∂u∗

)

=
∂2L

∂x1∂u∗
x′1 +

∂2L
∂x2∂u∗

x′2 = x2
∂2L

∂x1∂u∗
− (x1−aK)

∂2L
∂x2∂u∗

At the meanwhile,λ1 andλ2 for optimal trajectory must satisfy the adjoint equations

dλ1

dθ
= −

∂H∗

∂x1
= −

∂L∗

∂x1
+ λ2 (4.9)

Sinceλ′
1 could also be computed by

dλ1

dθ
= −

∂H
∂x1

∣

∣

∣

∣

u∗

it follows that
∂L∗

∂x1
=

∂L
∂x1

∣

∣

∣

∣

u∗
−2

aK
x1

λ2
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Similarly,
dλ2

dθ
= −

∂H∗

∂x2
= −

∂L∗

∂x2
−λ1 = −

∂L∗

∂x2
+

1
x2

[L∗− (x1−aK)λ2] (4.10)

and
∂L∗

∂x2
=

∂L
∂x2

∣

∣

∣

∣

u∗

But the termsdλ1/dθ anddλ2/dθ can also be obtained by differentiating (4.8) and (4.6), respec-

tively. Thus we arrive at

dλ1

dθ
= −

x′2
x2

2

[−L∗ +(x1−aK)λ2]+
1
x2

[

−
dL∗

dθ
+x′1λ2 +(x1−aK)

dλ2

dθ

]

= −
x1−aK

x2
2

[L∗− (x1−aK)λ2]+
1
x2

[

−x2
∂L∗

∂x1
+(x1−aK)

∂L∗

∂x2

]

+λ2 +
1
x2

(x1−aK)
dλ2

dθ
(4.11)

and

dλ2

dθ
=

2x1x′1
a

∂L
∂u∗

+
x2

1

a
d
dθ

(

∂L
∂u∗

)

=
2x1x2

a
∂L
∂u∗

+
x2

1x2

a
∂2L

∂x1∂u∗
−

(

x3
1

a
+u∗

)

∂2L
∂x2∂u∗

(4.12)

Sincedλ1/dθ in (4.11) can be rewritten as

dλ1

dθ
= −

∂L∗

∂x1
+ λ2+

x1−aK
x2

[

dλ2

dθ
+

∂L∗

∂x2
−

1
x2

(L∗− (x1−aK)λ2)

]

which is the same as (4.9) after using the equation (4.10). For the termdλ1/dθ, the right hand

sides (RHS) (4.10) and (4.12) must equal each other which leads to the relationship

0 =
2x1x2

a
∂L
∂u∗

+
x2

1x2

a
∂2L

∂x1∂u∗
−

(

x3
1

a
+u∗

)

∂2L
∂x2∂u∗

+
∂L∗

∂x2
−

1
x2

[L∗− (x1−aK)λ2]

or equivalently,

−L∗ +x2
∂L∗

∂x2
+

1
a

(

x3
1 +2x1x

2
2 +au∗

) ∂L
∂u∗

+
x2

1x2
2

a
∂2L

∂x1∂u∗
−

(

x3
1

a
+u∗

)

x2
∂2L

∂x2∂u∗
= 0

Thus the action function is the solution of this partial differential equation.

We can recapitulate as follows:
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Lemma 4.1 The optimal Lagrangian L∗ for the least action of the system (4.2) imposed by the

controller u∗ = −Kx2
1 is the solution of the following partial differential equation:

−L∗ +x2
∂L∗

∂x2
+

1
a

(

x3
1 +2x1x

2
2 +au∗

) ∂L
∂u∗

+
x2

1x2
2

a
∂2L

∂x1∂u∗
−

(

x3
1

a
+u∗

)

x2
∂2L

∂x2∂u∗
= 0 (4.13)

Although the existence and uniqueness of the solution for (4.13) is not clear, we could still find

its solution in the following way. Rewrite (4.13) into the following form:

0 = −L∗ +x2
∂L∗

∂x2
(4.14a)

+
x1x2

2

a

(

2
∂L
∂u∗

+x1
∂2L

∂x1∂u∗

)

(4.14b)

+

(

x3
1

a
+u∗

)(

∂L
∂u∗

−x2
∂2L

∂x2∂u∗

)

(4.14c)

Therefore, a special subset of solutions can be found by considering parts (b) and (c) in (4.14) to

be zeros, i.e.,

2
∂L
∂u∗

+x1
∂2L

∂x1∂u∗
=

1
x1

∂
∂x1

(

x2
1

∂L
∂u∗

)

= 0

∂L
∂u∗

−x2
∂2L

∂x2∂u∗
= −x2

2
∂

∂x2

(

1
x2

∂L
∂u∗

)

= 0

Thus, we suggest∂L/∂u∗ to be of the form

∂L
∂u∗

=
∂L
∂u

∣

∣

∣

∣

u∗
= C1

x2

x2
1

, C1 ∈ R

it follows that
∂L
∂u

= C1
x2

x2
1

+C̄2(x1,x2,u)(u−u∗)

Integrating aboutu gives us

L(x1,x2,u) = C1
x2

x2
1

(u−u∗)+C2(x1,x2,u)(u−u∗)2 +C̄3(x1,x2)

whereC2 andC̄3 are unknown functions to be determined. SubstitutingL back into the part (a) in

(4.14) leads to

−C̄3(x1,x2)+x2
∂C̄3

∂x2
= x2

2
∂

∂x2

(

1
x2

C̄3

)

= 0

i.e., we can choosēC3(x1,x2) = x2C3(x1). Since the value ofC1 will not affect the optimization

process, chooseC1 = 1 for simplicity. Therefore the Lagrangian may have the form

L(x1,x2,u) =
x2

x2
1

(u−u∗)+C2(x1,x2,u)(u−u∗)2 +x2C3(x1) (4.15)
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Thus the action functional is given by

I(u) =
∫ θ f

0

(

x2

x2
1

(u−u∗)+C2(x1,x2,u)(u−u∗)2 +x2C3(x1)

)

dθ (4.16)

We have the following result:

Theorem 4.1 Let C2(x1,x2,u) be a nonnegative function. Suppose there exists a minimal value

for action functional

I(u) =

∫ θ f

0

(

x2

x2
1

(u+Kx2
1)+C2(x1,x2,u)(u+Kx2

1)
2 +x2C3(x1)

)

dθ (4.17)

subjected to the system

dx1

dθ
= x2, x1(0) = x10,

dx2

dθ
= −

(

x1 +
a

x2
1

u

)

, x2(0) = x20,

then the corresponding controller is given by

u∗ = −Kx2
1

Moreover, the least action is

I∗ = min
u∈U

I(u) = C4(x
∗
1(θ f ))−C4(x10)

where C4 is an antiderivative of C3 and

x∗1(θ) = x20sinθ+(x10−aK)cosθ+aK.

Proof: Let λ1 andλ2 be the associated Lagrange multipliers, the Hamiltonian for this optimization

problem is given by

H(x1,x2,u,λ1,λ2) =
x2

x2
1

(u+Kx2
1)+C2(x1,x2,u)(u+Kx2

1)
2 +x2C3(x1)

+λ1x2−λ2

(

x1 +
a

x2
1

u

)

Let (x∗1,x
∗
2,u

∗,λ∗
1,λ

∗
2) be the admissible solution, it follows thatu∗ must satisfy

∂H
∂u

∣

∣

∣

∣

(x∗1,x
∗
2,u∗,λ∗1,λ

∗
2)

=
x∗2
x∗2

1

−
a

x∗2
1

λ∗
2 = 0, (4.18)

(x∗1,x
∗
2) is the solution of

dx∗1
dθ

= x∗2, x∗1(0) = x10, (4.19a)

dx∗2
dθ

= −

(

x∗1 +
a

x∗2
1

u∗
)

, x∗2(0) = x20, (4.19b)
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and(λ∗
1,λ∗

2) is the solution of adjoint equation

dλ∗
1

dθ
= −

∂H
∂x1

∣

∣

∣

∣

(x∗1,x∗2,u
∗,λ∗1,λ

∗
2)

=

(

1−
2a

x∗3
1

u∗
)

λ∗
2−x∗2

(

2K
x∗1

+C′
3(x

∗
1)

)

, (4.20a)

dλ∗
2

dθ
= −

∂H
∂x2

∣

∣

∣

∣

(x∗1,x∗2,u
∗,λ∗1,λ

∗
2)

= −C3(x
∗
1)−λ∗

1. (4.20b)

and

H(x∗1,x
∗
2,u

∗,λ∗
1,λ

∗
2) =

x∗2
x∗2

1

(u∗ +Kx∗2
1 )+C2(x

∗
1,x

∗
2,u

∗)(u∗ +Kx∗2
1 )2 +x∗2C3(x

∗
1)

+λ∗
1x∗2−λ∗

2

(

x∗1 +
a

x∗2
1

u∗
)

Now,

H(x∗1,x
∗
2,u,λ∗

1,λ
∗
2)−H(x∗1,x

∗
2,u

∗,λ∗
1,λ

∗
2)

= [C2(x
∗
1,x

∗
2,u)(u+Kx2

1)
2−C2(x

∗
1,x

∗
2,u

∗)(u∗ +Kx2
1)

2]

+

(

x∗2
x∗2

1

−
a

x∗2
1

λ∗
2

)

(u−u∗)

= C2(x
∗
1,x

∗
2,u)(u+Kx2

1)
2−C2(x

∗
1,x

∗
2,u

∗)(u∗ +Kx2
1)

2

From Pontryagin Minimal Principle, the condition

H(x∗1,x
∗
2,u,λ∗

1,λ
∗
2)−H(x∗1,x

∗
2,u

∗,λ∗
1,λ

∗
2) ≥ 0, ∀u∈U,

leads to the unique optimal control law

u∗ = −Kx2
1

for all nonnegative functionC2. Substituting the optimal control law intoL(x1,x2,u) gives us

L∗ = L(x∗1,x
∗
2,u) = x∗2C3(x

∗
1)

Therefore, the least action is

I∗ = min
u∈U

I(u) =
∫ θ f

0
x∗2C3(x

∗
1)dθ =

∫ x∗1(θ f )

x10

C3(x1)dx1 = C4(x
∗
1(θ f ))−C4(x10)

whereC4 is an antiderivative ofC3. The optimal trajectory in (4.19) is computed by

d
dθ

[

x∗1
x∗2

]

=

[

0 1

−1 0

][

x∗1
x∗2

]

+

[

0

aK

]

with its solution

x∗1(θ) = x20sinθ+(x10−aK)cosθ+aK, (4.21a)

x∗2(θ) = x20cosθ+(aK−x10)sinθ. (4.21b)
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This concludes our proof. 2

Furthermore, we discuss some properties of Theorem 4.1. Firstly, for u∗ = −Kx∗2
1 the Hamil-

tonian along the optimal trajectory is given by

H(x∗1,x
∗
2,u

∗,λ∗
1,λ

∗
2) = x∗2 (λ∗

1 +C3(x
∗
1))−λ∗

2(x∗1−aK) = 0 (4.22)

And using (4.22) the optimal costate (4.20) becomes

d
dθ

[λ∗
1 +C3(x

∗
1)] = λ∗

2,

dλ∗
2

dθ
= K−

x∗1
a

,

with its solution

λ∗
1(θ)+C3(x

∗
1(θ)) =

x∗1
a
−K =

x20

a
sinθ+

(x10

a
−K

)

cosθ+aK, (4.23a)

λ∗
2(θ) =

x∗2(θ)

a
=

x20

a
cosθ+

(

K−
x10

a

)

sinθ. (4.23b)

This solution is as same as computed by using (4.18) and (4.22). From (4.21) and (4.23) we see

that the optimal state and costate are periodic functions with period 2π, i.e.,

x∗1(2Nπ) = x10, λ∗
1(2Nπ)+C3(x

∗
1(2Nπ)) =

x10

a
−K,

x∗2(2Nπ) = x20, λ∗
2(2Nπ) =

x20

a
.

for all integerN.

Next, from Theorem 4.1, the only condition on the functionC2 is it must be nonnegative.

And the selection ofC3 function will not affect the optimal control law and the optimal trajectory.

Once we choose certain type of function forC3, the optimal costateλ∗
1 is determined according to

(4.23a).

Thirdly, the meaning of the action functionalI can be clarified more clearly. SinceI∗ can be

expressed as

I∗ = J∗ =
∫ θ f

0
H(x∗1,x

∗
2,u

∗,λ∗
1,λ

∗
2)dθ−

∫ θ f

0

(

λ∗
1x∗1

′ + λ∗
2x

∗
2
′)dθ

and with the aid of (4.22) we arrive at

I∗ = −

∫ θ f

0

(

λ∗
1x∗1

′ + λ∗
2x∗2

′)dθ

= −

∫ θ f

0
[(λ∗

1 +C3(x
∗
1))dx∗1(θ)+ λ∗

2dx∗2(θ)]+

∫ θ f

0
C3(x

∗
1)dx∗1(θ)

Comparing with Theorem 4.1 leads to
∫ θ f

0
(λ∗

1 +C3(x
∗
1))dx∗1(θ)+ λ∗

2dx∗2(θ) = 0, ∀θ f .
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Let

E(x1,x2) =

∫

(λ1 +C3(x1))dx1 + λ2dx2

then we have
dE
dθ

=
∂E
∂x1

x′1 +
∂E
∂x2

x′2 , (λ1 +C3(x1))x
′
1 + λ2x

′
2

i.e.,

∂E
∂x1

= λ1 +C3(x1) =
x1

a
−K,

∂E
∂x2

= λ2 =
x2

a
.

Solving these two partial differential equations gives us

E(x1,x2) =
1
2

`2

m
(x2

1 +x2
2)−Kx1 (4.24)

after using use the relationa= m/`2. Therefore for allθ f the optimal control lawu∗ =−Kx2
1 (i.e.,

the inverse square law) is to keep the functionE be constant along the optimal trajectory

E(x∗1(θ f ),x
∗
2(θ f )) = E(x10,x20) , E(constant).

What is the physical meaning ofE? After introducing the notationsx1 = 1/r, x2 = d
dθ

1
r , ` = mr2θ̇,

and (3.4a) the functionE can be expressed as

E =
1
2

`2

m

[

1
r2 +

(

d
dθ

1
r

)2
]

−K
1
r

=
1
2

mr2θ̇2 +
1
2

mṙ2−
K
r

henceE is the total energy of the system with

E = T(r, ṙ)+U(r)

in which

T(r, ṙ) =
1
2

mṙ2 +
1
2

mr2θ̇2

is the kinematic energy andU(r) = −K/r is the potential energy of the gravity field. The optimal

control lawu∗ for least action is used by nature to keep the total energy being constant along the

optimal orbit of motion . Therefore, we have the following conclusion.

Conclusion 1 From optimal control theory point of view, the conservationof the total energy is

automatically ensured by the inverse square law.

The result is consistent with what we have learn from classical mechanics [4,5]. Thus when a new

physical fact is observed from experiment, the inverse optimal control problem gives us the way

to deal with the principle behind.
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The following remarks the present study can also be conducted from Hamilton-Jacobi-Bellman

(HJB) equation.

Remark 4.2 The results in Lemma 4.1 and Theorem 4.1 for arbitraryθ f could also be obtained

by solving the stationary HJB equation:

L∗ +x∗2
∂I∗

∂x1
−

(

x∗1 +
a

x∗2
1

u∗
)

∂I∗

∂x2

= min
u∈U

{

L(x1,x2,u)+x2
∂I∗

∂x1
−

(

x1 +
a

x2
1

u

)

∂I∗

∂x2

}

= 0

with
∂

∂u

{

L(x1,x2,u)+x2
∂I∗

∂x1
−

(

x1 +
a

x2
1

u

)

∂I∗

∂x2

}∣

∣

∣

∣

u∗
= 0.

5 Generalization for a Dynamical System

In previous section, the Lagrangian for least action to the motion of a particle must satisfy

a second order partial differential equation. The corresponding optimal controller is really the

inverse square law in gravity field. Within this section thisidea is generalized to treat a dynamical

system.

Consider a system withn degrees of freedom possessesn equations of nonrelativistic motion:

q̇1 = f1(q1, . . . ,qn,u1, . . . ,um),
...

q̇n = fn(q1, . . . ,qn,u1, . . . ,um),

(5.1)

whereui, 1 ≤ i ≤ m be the internal or external forces to the system (which is recognized as the

control input). For this system, theoptimal control problemis to find an optimal control force

ui = u∗i (q1, . . . ,qn), i = 1,2, . . . ,m

such that the action

I(u) =

∫ t f

0
L(q1, . . . ,qn,u1, . . . ,um,t)dt

is minimized withqi andui satisfying the constraint (5.1).

Suppose some experiments have been conducted such that the forces of the system are mea-

sured with the following relationship:

ui = u◦i (q1, . . . ,qn), i = 1,2, . . . ,m (5.2)



78

whereu◦i ’s are known functions depending on the generalized coordinatesq1, . . . ,qn. As before,

it ask: “Is there exists a LagrangianL◦(q1, . . . ,qn,u1, . . . ,um,t) such that the admissible solution

u∗i in the optimal control problem is equal tou◦i for all i?” Hereu◦i represents the physical law

in nature. Once there exists such functionL◦, the lawu◦ is the outcome of least action taken by

nature.

The HamiltonianH for this optimization is given by

H = L(q1, . . . ,qn,u1, . . . ,um,t)+
n

∑
j=1

λ j f j(q1, . . . ,qn,u1, . . . ,um) (5.3)

whereλ j , 1≤ j ≤ n are the Lagrange multipliers. The optimal control law must satisfy

∂H
∂ui

∣

∣

∣

∣

(u∗1,...,u
∗
m)

= 0

or equivalently,
∂L
∂ui

∣

∣

∣

∣

(u∗1,...,u
∗
m)

+
n

∑
j=1

λ j
∂ f j

∂ui

∣

∣

∣

∣

(u∗1,...,u
∗
m)

= 0 (5.4)

A vector notation is adopted for simplicity. Denote the following symbols

q =
[

q1 · · · qn

]T
, f =

[

f1 · · · fn
]

,

u =
[

u1 · · · um

]T
, λ =

[

λ1 · · · λn

]

,

∂L
∂u

=
[

∂L
∂u1

· · · ∂L
∂um

]T
,

∂H
∂q

=
[

∂H
∂q1

· · · ∂H
∂qn

]T
,

J(f,u) =

[

∂ f j

∂ui

]

(i, j)
=









∂ f1
∂u1

· · · ∂ fn
∂u1

...
∂ f1
∂um

· · · ∂ fn
∂um









(5.5)

Then (5.4) can be rewritten as

0 =
∂L
∂u

∣

∣

∣

∣

u∗
+ J(f,u)

∣

∣

u∗λ ,
∂L
∂u∗

+ J(f,u∗)λ (5.6)

The corresponding optimal state is given by

q̇ = f(q,u∗) , f∗, (5.7)

and the corresponding Hamiltonian is

H∗ = L(q,u∗,t)+ λT f(q,u∗) = L∗ + λT f∗ = 0 (5.8)
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whereL∗ is used to denoteL(q,u∗,t). And the costate is the solution of

λ̇ = −
∂H∗

∂q
= −

∂L∗

∂q
−J(f∗,q)λ, (5.9)

respectively. Our purpose is to combine (5.6), (5.7), and (5.9) so as to obtain a partial differential

equation containingL∗ as its unknown.

Firstly, we differentiate the first term in (5.6) to obtain

d
dt

∂L
∂u∗

=
∂2L

∂t∂u∗
+ J

(

∂L
∂u∗

,q
)T

q̇ =
∂2L

∂t∂u∗
+ J

(

∂L
∂u∗

,q
)T

f∗ (5.10)

and for second term to obtain

d
dt

[J(f,u∗)λ]) = J(f,u∗)λ̇ +
d
dt

[J(f,u∗)]λ

= −J(f,u∗)
∂L∗

∂q
+

(

d
dt

[J(f,u∗)]−J(f,u∗)J(f∗,q)

)

λ (5.11)

Then the derivative of (5.6) with respect to time is

0 =
d
dt

∂L
∂u∗

+
d
dt

[J(f,u∗)λ] (5.12)

Substitution of equations (5.10) and (5.11) into (5.12) leads to

0 =
∂2L

∂t∂u∗
+ J

(

∂L
∂u∗

,q
)T

f∗−J(f,u∗)
∂L∗

∂q

+

(

d
dt

[J(f,u∗)]−J(f,u∗)J(f∗,q)

)

λ (5.13)

Whenm= n and supposeJ(f,u∗) be nonsingular, from (5.6) it follows that

λ = −J(f,u∗)−1 ∂L
∂u∗

(5.14)

and (5.13) becomes a second-order partial differential equation forL∗:

0 =
∂2L

∂t∂u∗
+ J

(

∂L
∂u∗

,q
)T

f∗−J(f,u∗)
∂L∗

∂q

−

(

d
dt

[J(f,u∗)]−J(f,u∗)J(f∗,q)

)

J(f,u∗)−1 ∂L
∂u∗

On the other hand, whenm 6= n or J(f,u∗) with m= n be singular, the costate should be eliminated

by using (5.6) and (5.8). We recapitulate the above discussion as following theorem:

Theorem 5.1 Consider the dynamical system

q̇ = f(q,u), q(0) = q0 (5.15)
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driven by a known control forceu◦(q) whereq, u ∈ R
n and the Jacobian matrixJ(f,u) is defined

by

J(f,u) =

[

∂ f j

∂ui

]

(i, j)
=









∂ f1
∂u1

· · · ∂ fn
∂u1

...
∂ f1
∂um

· · · ∂ fn
∂um









.

The Lagrangian L◦(q,u,t) for least action principle with optimal control lawu∗ = u◦ is the solu-

tion of the following partial differential equation

0 =
∂2L

∂t∂u∗
+ J

(

∂L
∂u∗

,q
)T

f∗−J(f,u∗)
∂L∗

∂q

−

(

d
dt

[J(f,u∗)]−J(f,u∗)J(f∗,q)

)

J(f,u∗)−1 ∂L
∂u∗

(5.16)

provided thatJ(f,u∗) = J(f,u)
∣

∣

u∗ is nonsingular, where

f∗ = f(q,u∗),
∂L
∂u∗

=
∂L
∂u

∣

∣

∣

∣

u∗

Example 5.2 Find the LagrangianL such that the functionu∗ = −2x is the optimal control law

to minimize

J(u) =

∫ ∞

0
L(x,u)dt

subjected to the dynamical system

ẋ(t) = x(t)+u(t), x(0) = x0

with x(t), u(t) ∈ R.

Comparing the notation presented in this section, we have

f (x,u) = x+u,

and

J( f ,u) =
∂ f
∂u

= 1, J( f ,x) =
∂ f
∂x

= 1,

Along the optimal trajectory it follows that

J( f ,u∗) = 1, f ∗ = −x, J( f ∗,x) = −1,

and
d
dt

J( f ,u∗) = 0,
∂2L

∂t∂u∗
= 0, J(

∂L
∂u∗

,x) =
∂2L

∂x∂u∗
.

Thus (5.16) becomes

0 =
∂L∗

∂x
+x

∂2L
∂x∂u∗

+
∂L
∂u∗
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and it can be rewritten as follows

0 =
∂L∗

∂x
+

∂
∂x

(

x
∂L
∂u∗

)

=
∂
∂x

(

L∗−
u∗

2
∂L
∂u∗

)

=
∂
∂x

(

−
u3

2
∂
∂u

(

L
u2

)∣

∣

∣

∣

u∗

)

Thus the Lagrangian must satisfy

−
u3

2
∂
∂u

L
u2

∣

∣

∣

∣

u∗
= C4 (constant)

with all possible solution given by

L(x,u) = C1(x,u)(u−u∗)2 +C2(x)u
2 +

C4

u2

whereC1 andC4 are arbitrary functions. Therefore a simplest solution isL(x,u) = u2, and by

direct verification the corresponding optimal control law isu∗ = −2x.

6 Conclusions

Our paper provides the answer for the question: “Is the inverse square law in gravity field the

outcome of some optimal action taken by nature?” As motivated by the assumption of Maupertuis,

we take the action as time integral of some unknown Lagrangian and recognize the inverse square

law in gravity field as an optimal control law for the motion ofparticles ensured by Newton’s

Second Law. As the result of applying Pontryagin Minimal Principle, the unknown Lagrangian

must satisfy a second-order partial differential equationand some of its solution has been analyti-

cally constructed. There are infinitely many Lagrangian’s which corresponds to the same optimal

control law. For all these Lagrangian’s we have shown that the optimal control law minimizing

the action is exactly the inverse square law. And the minimization process is to maintain the level

of total energy along the “least action” trajectory withoutchange. At the meanwhile, this least

action trajectory is a periodic orbit of period 2π. Furthermore, we generalize the formulation to

give a necessary condition for Lagrangian under which an arbitrary nature law can be considered

the optimal control law manipulated by nature.

There are topics for further study e.g., to answer: “Is the inverse square law in electromagnetic

field also the outcome of some least action taken by nature?” or “What is the action corresponding
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to an optimal control law - inverse square law in the combination of gravity and electromagnetic

fields?” This paper also raises an new research direction: inverse problem in mathematical opti-

mization or optimal control theory.
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試問平方反比定律可否為大自然的最佳控制器? 
對應的行動能量為何? 

 
黃皇男*    楊憲東+ 

摘    要 

於古典力學範疇，通常先設定某一 Lagrangian 泛函為系統的行動能量，再利用變分法求其
最小值而決定該系統的運動方程式。倘若我們假定平方反比定律為大自然的最佳控制手段，試問

其對應的行動能量為何?本文以二個物體的平面運動為分析對象，來回答此一問題。首先利用
Pontryagin 最小原則，推導發現該行動能量須滿足特定的偏微分方程。此一方程的解雖有無限多
組，然其中一組的解為該系統的行動能量是總能量，所顯示的物理意義為大自然若採取平方反比

定律為最佳控制器，其目的在維持物體沿特定軌道運動的總能量為固定。文章最後，將此問題推

廣到多體運動的情形，得到一組偏微分，在一般情形下不易求解。 
 

關鍵詞：平方反比定律，Lagrangian泛函，Pontryagin最小原則，最佳控制，反問題。 
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