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Abstract

In this paper, we study the dynamical behavior of a competition system with time delay. We first use
three different methods to analyze the global stability of the unique positive equilibrium point of the system
without time delay. Secondly, it is shown that the system with time delay is uniform persistent under some
appropriate conditions, and sufficient conditions are obtained for the global stability of the unique positive

equilibrium point of the system with time delay. Finally, we illustrative our results by some examples.
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1 Introduction

In recent years, the application of theories of functional differential equations in mathematical
ecology has developed rapidly. Various mathematical models have been proposed in the study of
population dynamics, ecology and epidemic. Some of them are described as autonomous delay
differential equations. Many people are doing research on the dynamics of population with delays,
which is useful for the control of the population of mankind, animals and the environment. One of
the famous models for dynamics of population is the Lotka-Volterra competition system. Owing
to its theoretical and practical significance, the Lotka-Volterra systems have been studied exten-
sively [5,6,15]. There is a large volume of literature relevant to the theory of the Lotka-Volterra
systems and methods and results can be found in Gopalsamy [6], Kuang [8], Takuechi [11] and
the references therein.

Since time delays occur so often in nature, a number of models in ecology can be formulated

as systems of differential equations with time delays. One of the most important problems for
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this type of system is to analyze the effect of time delays on the stability of the system. From the
literature on ecological models with time delays, we have known that for some systems [3,15],
the stability switches many times and the systems will eventually become unstable when time
delays increase. While for other systems [12,14], there will be no change in uniform persistence
or permanence of the systems when the time delays vary. Uniform persistence or permanence
concerning the long time survival of a population is a more important concept of stability from the

viewpoint of mathematical ecology.

In this paper, we consider the competition system with time delay,

a() = x()|n-anx@-1) - {223 W

() = x()|n-a—1) - R '
with initial conditions

xi(t) = di(t) > 0,1 € [—1,0],0;(0) > 0,i = 1,2 (1.2)
where - = d/dt, ri, a;j (i,j = 1,2), and T are positive constants. ¢;(¢)(i = 1,2) are continuous

bounded functions on the interval [—1,0]. x;(¢) and x»(7) denote the population densities (or
biomasses) of two species competing for a common pool of resources in a temporally uniform

environment.

In this paper, we determine sufficient conditions on the parameters of the system that ensure
uniform persistence and globally asymptotic stability of the system. The present paper is organized

as follows.

In section 2 we analyze the system (2.1). We first propose our system, and obtain positivity
and boundedness results. Next, the global stability property of the system (2.1) is established by
the application of the Dulac’s criterion plus Poincaré-Bendixson theorem, the construction of the

Lyapunov function or stable limit cycle analysis.

In section 3 we analyze the system (3.1). First of all, we give conditions for uniform persistence
to hold for the systems (3.1) and (3.2). Next, provides sufficient conditions for the unique positive

equilibrium point of the system (3.1) to be globally asymptotically stable.

In section 4 we give two suitable examples to show the result in the sections 2 and 3, respec-

tively.
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2 The System without Time Delay

Consider the following competition system

xl(t) = xl(t) rl—anx,(t) fﬁ))?z((t)) = fi (xth) o
XQ(I) = )CQ(I) rz—azzxz(t) fil);ll((t)) = fz(xth) .

where - = d/dt, ri, ajj (i, j = 1,2) are positive constants. x1(r) and x(¢) denote the population
densities (or biomasses) of two species competing for a common pool of resources in a temporally

uniform environment.

2.1 Local Stability

Clearly, Ey = (0,0), Ey = (r1/a11,0), and E» = (0,2 /az;) are the equilibrium points of the system
(2.1). On the other hand, let E* = (x},x}) be the unique positive equilibrium point of the system
(2.1).

Remark 2.1 If
ry > (a1 —r2)xj 2.2)

and

a; <0, o 75 0, a3 > 0, where 2.3)
Ol = ajlaz1 —apa —rai
Oy = riax +riry —rapp —riax; —radjl —apa +appas

03 = riax +rir; —rap
hold, then E* is the unique positive equilibrium point of the system (2.1).

Firstly, we discuss the local stability of equilibrium points of the system (2.1) by the Hartman-
Grobman theorem. Secondly, we use three different methods to analyze the global stability of the
unique positive equilibrium point E* of the system (2.1).

Now let us study the local behavior of the system (2.1) at equilibrium points Eg, E;, E> and
E*. The Jacobian matrix of the system (2.1) take the form

apnx; ax
—2anx1 — -—
I 1+x (14x2)
= az1x2 a1 xy
— ) — 2a2x) —

(l+x1)2 1+x



74

The Jacobian matrix Jo = J(0,0) of the system (2.1) at E takes the form of

r 0
0 nrn

Since det (Jo) = rirp > 0 and trace(Jy) = r1 4+ r2 > 0, the equilibrium point Ey is unstable.

Jo =

Lemma 2.1

(a) If

riazy
rn > — 2.4
: ri+ar @4

then the equilibrium point E1 is a saddle point. And we know
I = {(xl,x2)| x1>0,x=0 }
is the stable manifold of the equilibrium point E1.

(b) If

riazy
rn < — 2.5
: ri+ar 2-)

then the equilibrium point E is locally asymptotically stable.

Proof: The Jacobian matrix J; = J(r; /a11,0) of the system (2.1) at E takes the form of

ria
—r _
a
Ji= Vle]
0 rn——
ri+am
Since
riazy
det(1) = —-ri|n—————
ry+an
and
riazy
trace(J1) = —-ri+rn—
ry+an
riasy
Casel.rp, > ————
r +amn

In this case,

det(J])z—rl (rz— i )<0

ri+ai
then the equilibrium point E7 is a saddle point. And we know

I = {(xl,x2)|x1 >0 R xZ:O}
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is the stable manifold of the equilibrium point E|.
riaz;
Case 2. <
. ri+ari
In this case,

det(J1) = —r <r2ﬂ> >0

r1+aii
and
r1az
trace(J1) = —ri+rmn— ———
1) P ri+ai
then the equilibrium point £ is locally asymptotically stable. This completes the proof.

The Jacobian matrix J, = J(0,72/az) of the system (2.1) at E; takes the form of

rnai2

ry — T O
— r a
JZ - }%021 2
_ —ry
anp

From (2.3), we know

rapn
det(Jrh)=—r|r — <0
(2) 2( ] r2+azz)

then the equilibrium point E; is a saddle point. And we know
I, = {(xl,x2)|x1 =0 , X2 >O}
is the stable manifold of the equilibrium point E».

Lemma 2.2 If

azazi

1+x* 2 1+x* 2
(P O+m? > 22

(2.6)
then the unique positive equilibrium point E* = (x{,x3) is locally asymptotically stable.

Proof: The Jacobian matrix J* of the system (2.1) at E* takes the form of

—apx} _ x|
o (1+x5)°
- a2|x§ "
1
Since
a1 x5 anx;
det(/") = (anaq) (amey) - ——ts
(I+x7)" (1+x3)
alzazlx*x*
= ajjanxixs— 1 2 11 2* 5
(1+x7)" (14x3)
= Xix5 ajrar 1221
= XX -
(14x5)* (1 4+x3)*

> 0
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and

trace(J*) = —apx] —anx,
= —(anx]+anx;)

< 0
the unique positive equilibrium point E* is locally asymptotically stable. This completes the proof.
Lemma 2.3 All solutions (x(t),x2(t)) of the system (2.1) are positive and bounded.

Proof: Firstly, we want to show that all solutions (x; (t),x2(¢)) of the system (2.1) are positive.
In other works, if the initial point (x;(0),x2(0)) is in the first quadrant, then (x;(¢),x(¢)) is also
in the first quadrant for all # > 0. Since x-axis and x»-axis are the solutions of the system (2.1),
then the trajectory of the solution (x;(¢),x2(¢)) with initial point (x1(0),x2(0)) in the first quadrant
can not cross with xj-axis and x»-axis by the uniqueness of the solution. Hence all solutions
(x1(t),x2(2)) of the system (2.1) are positive.

Secondly, we want to show that all solutions (x;(¢),x2(¢)) of the system (2.1) are bounded.
That is, we want to show that x;(¢) < K; = max{x;(0),r;/a;} (i = 1,2) for all # > 0. Now, show
that x; () < Kj for all # > 0. The proof for x»(¢) is similar. For x(¢), suppose there exists t* > 0
such that x; (#*) = K; and %, (¢*) > 0. Thus

e " o anx(t’)
Xl(t ) = )C](t )|:r1011x1([ )Tz(t*)]
. alzxz(t*)
= K {1’1 alﬂﬁm}

< Ki(r1—anki)
< 0

This contradicts % (¢*) > 0. Hence x;(¢) < K; for all # > 0. Similarly, we can show that
x2(t) < K = max{x2(0),72/az} for all # > 0. Therefore, all solutions (x(¢),x2(¢)) of the system
(2.1) are bounded. This completes the proof.

2.2 Global Stability

In this section, we want to use three different methods to analyze the global stability of the unique

positive equilibrium point E* of the system (2.1).
(i) Dulac’s criterion plus Poincaré-Bendixson theorem
(i) Lyapunov function

(iii) Stable limit cycle analysis
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At first, we use the method (i) to analyze the system (2.1).

Theorem 2.1  [f(2.3), (2.4) and (2.6) hold, then the unique positive equilibrium point E* of
the system (2.1) is globally asymptotically stable.

Proof: From Lemma 2.3 the solution (x; (z),x2(¢)) of the system (2.1) is positive and bounded.
Let
H(x1,x) = L,xl,xz >0
X1X2
Then

0 J
g(Hfl)Jra (Hf2)

- Zp (o 22
az1x|
[ (e 133
0 [1 apxs
- a—[;( ~a M)]

+2 an1xy
- o —
axz X1 2T anh 1+x

ail az?

X2 X1

ail an
= - — 4+ —
X2 X1

< 0

Hence by the Dulac’s criterion, there is no closed orbit in the first quadrant. By Lemma 2.2,
we know that the unique positive equilibrium point E* is locally asymptotically stable. By Lemma
2.3 and the Poincaré-Bendixson theorem, it suffices to show that the unique positive equilibrium
point E* is globally asymptotically stable in the first quadrant. This completes the proof.

Secondly, we want to analyze the global stability of the unique positive equilibrium point E*
of the system (2.1) by using the method (ii).

Theorem 2.2 If
a| —61227 > ap —dail 2.7

x| >
axn an

then the unique positive equilibrium point E* = (x],x5) of the system (2.1) is globally asymptoti-
cally stable.

Proof: Construct the following Lyapunov function

V(x1 ,xz) = W (x1 ,xz) + Vz(Xl,Xz)
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where
1+x5 X
Vi(xi,x) = 2 1x;—xj—xiIn=
ain X1
1+x7 X2
Va(xi,x0) = Lix,— x5 —x3In=
any Xy

on G = {(x1,x2)| x1 >0, x, >0 }. It is obvious that V(x1,x2) € C! (G,R), V(x},x5) = 0 and
V(x1,x2) > 0 for (x1,x2) € G—{(x},x5)}. Then the time derivative of V;(x1,x2), i = 1,2, along
trajectory of the system (2.1) is given by

. 1+x5 |, X7 X
V]()C],)CQ) = 2 {xl—x’[-—l-—*
aln X1 X
1+x5 x
= /2.0 -5
a
1+ x5 ainxy
= Tzz (r1 —daiixy — 1+X2 ()C[ —XT)
1+x3 apx; anx;
= alzz (a“xT—I— 1+x2* —dapxy — T 1x ()C[ —XT)
2
2 2
_an(+x)xx an (14x5) (1) oo — g — (1+x3)x]
an an an
an (1+x5)xix - (L+x5)xx | (14+x5)x5x
an 1+x 14+x
aiy (14x3) w2 (=) (2 —x3)
= ———=(x1—x])" — 2.8
an (x1 —x7) 1 +x (2.8)
and
. 1+x7 X5 X
\% s = X _x* 22 22
2 (x1,X2) o [ 27X 5
1+xF X
- 1tn % (X2 — x3)
a1 X2
1+ x7 ar1xi
= 711 (r2 —danxy — 1 T ()CQ —)C;)
1+xt ax; az|xy
= . 1 (azzx; + m —anxy — 1 T (.xz _Xé)
1
2 2
_ (14+x7)x5x0 _axn (T4+x7) (x3) s — X — an (1+x7)x3
az az azi
Jrazz(l +x7) x5x2 B (I4+x))xix2 (14x7)xix5
ar] 14+x 1+ x;

asi 14+x
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Thus the derivative of V(x,x7) is given by

V(xl,xz) = Vl(xl,xz)Jer(xl,xz)
__an(l+x) (o1 —x1)2— (1 —x7) (2 —x3)
a ! 1+x
Can(l+x)) (2 —2)2 — (1 —x7) (2 —x3)
as| 2 1+ xq
1 A 1 *
_ 7611] ( +X2) (xl 7)(1;)27 a22( +x]) (XZ *)C;)Z
an az]
1 1 .
() D )
1/ 1 1 5
= 5 (i ) [ o =) 20 ) (2 =)
1 1 1 w2 anl (1 —&-x;) 2
(o 1) o - L
1 1 1 ") a22(1 +x]) 12
+2<1+ ]+1+x2>(x2 x3) . (2 —x3)
1 1 1 « 12
= 3 () [ )+ )
ai 1+x2) 1 1 1 2
{ 2 1+x1+1+x2 (o1 =xi)
(122(1+x1) l 1 1 2
|: a| 2\ 1+x + 1+x; (XZ %)

1 1 1 * *\12
< 5 (st ) =)+ )
1 3 1 i
_ |:a”( +x2) o 1:| (xl *XT)Z* |:a22( +‘xl) _ 1:| (xZ*xé)Z
apn azl
< 0

Hence V(x1,x2) < 0 on G. Therefore, it follows from Lyapunov-LaSalle theorem that the
unique positive equilibrium point E* of the system (2.1) is globally asymptotically stable on G.
This completes the proof.

Finally, we introduce the method (iii) to prove the global stability of the unique positive equi-

librium point E* of the system (2.1).

Theorem 2.3  [f(2.3), (2.4) and (2.6) hold, then the unique positive equilibrium point E* of
the system (2.1) is globally asymptotically stable.

Proof: Tt suffices to show that the system (2.1) has no closed orbit in the first quadrant. Suppose
on the contrary that there is a 7-periodic orbit I' = {(x; (¢),x2(¢))| 0 <t < T } in the first quadrant.
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Then

_ dfi | If2
A= /(8)(1 a)CQ)

0
= x1,x2) + =— fo(x1,x dt
/ { fi(xr,x2) axsz(l 2)] —
x2=x2(t)
/ 0 4 anx,
= — X
a -
a1xy
— — dt
+8 [ <I‘2 4t 1+x1>}} xy=x1 ()
xo=x2(t)
T 9 alzxzﬂ
= — — dt
/0 ox, { <” R Ty | R
x=x2(t)
T 9 ar x|
2 apxy — 2 dt
+/0 ox; [xz (r2 s I+x xp=x1(t)
xo=x(t)
T ajx;
- —anx — - dt
/0 |:(rl arix 1+x2) allxl:| s ()
xo=x(t)
+/TK . “2“”) x} "
r—a — —a
0 2 22A2 1+x1 22A2 - (l)
xo=x2(t)

_ /0 E?dtau /OT’“ )i + / ng di — ax /0 xo(1)dr

x(T) T (T) | T
/ —dX1 —dai / X1 dl—‘r —dXZ—azz/ )Cz(t)dl
x1(0) 0 0

Since I' is a T-periodic,

x1 (T ) x(T)
/ —dx1 0 and / —dxz
x1(0)

Hence we have

A= - /0 " lann 0) + azxa (1) dr
< 0

This indicates that all closed orbits of the system (2.1) in the first quadrant are orbitally stable.

Since every closed orbit is orbitally stable and then there is an unique stable limit cycle in the first
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quadrant. That is, the unique positive equilibrium point E* is unstable. However, by Lemma 2.2,
the unique positive equilibrium point £* is locally asymptotically stable. Thus there is no closed
orbit in the first quadrant. By Lemma 2.3 and the Poincaré-Bendixson theorem, it suffices to show
that the unique positive equilibrium point E* of the system (2.1) is globally asymptotically stable
in the first quadrant. This completes the proof.

3 The System with Time Delay

Consider the following competition system with time delay

1) = x(t) rl—a”xl(t—‘c)—% o

() = ) |r—anai—1) fi);]((t—?) '
with initial conditions

xi(t)=0i(t) >0, tre[-1,0, ¢;(0)>0, i=1,2 (3.2)
where - = d/dt, ri, a;j (i,j = 1,2), and T are positive constants. ¢;(¢)(i = 1,2) are continuous

bounded functions on the interval [—7,0]. x;(¢) and x,(7) denote the population densities (or
biomasses) of two species competing for a common pool of resources in a temporally uniform
environment. Clearly, the equilibrium points of the system (3.1) are the same as in the system
(2.1).

3.1 Uniform Persistence

The following lemmas are elementary and are concerned with the qualitative nature of solutions

of the system (3.1) with initial conditions (3.2).

Lemma 3.1 Solutions of the system (3.1) with initial conditions (3.2) remains positive for all
t>0.

Proof: We want to show that all solutions (x;(¢),x(¢)) of the system (3.1) with initial condi-
tions (3.2) are positive. In other works, if the initial point (x1(0),x2(0)) is in the first quadrant, then
(x1(2),x2(2)) is also in the first quadrant for all 7 > 0. Since x;-axis and x,-axis are the solutions of
the system (3.1) with initial conditions (3.2), then the trajectory of the solution (x; (¢),x2(¢)) with
initial point (x1(0),x2(0)) in the first quadrant can not cross with x;-axis and x,-axis by the unique-
ness of the solution. Hence all solutions (x;(),x2(¢)) of the system (3.1) with initial conditions

(3.2) are positive. This completes the proof.
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Lemma 3.2  Let (x(t),x2(¢)) denote any solution of the system (3.1) with initial conditions
(3.2). Then

0<x(t)<M; (i=1,2) (3.3)

eventually for all large t, where

M, = V_ler]»c
ai

My, — (r2+ax)Mi+ry {(r2+az1)M1+r2}
axn (1+M) 1+ M,

Proof: By Lemma 3.1, we know that the solutions of the system (3.1) with initial conditions

(3.2) are positive, and hence, by first equation of the system (3.1),

< xi(t) [ —anxi(t—1)] 3.4

Taking M| = a% (h1+1), where 0 < hy < 1" — 1. Firstly, suppose x;(¢) is not oscillatory
about M. That is, there exists a 7* > 0 such that either

xi(t) < Mj for t > T" (3.5)
or
xi(t) > Mj for t > T" (3.6)

If (3.5) holds then (3.3) follows. Suppose (3.6) holds, then

x() < x@®)[rn—anx(t—1)
< xl(t) (r1 7a11MT)
< —r|h1x1(t) for t >T*+1

Therefore,
0<xi(t)<x1(0)e ™M 0  asr—0

That is, fhl?o x1(t) = 0, by the Squeeze Theorem. It contradicts to (3.6). So, there must exist a
Ty > T* such that x1 (T7) < Mj. If x;(t) < M7 for all + > T7, then (3.3) follows. If not, then there
must exist a 7> > T; such that x; (7>) > M. Therefore, there exists a 73 > T» such that x (73) < M}
by above discussion. By above, we know that x{ (71) < M7, x;(T») > M7, and x| (T3) < M} where
Ty < T < Ts. Then, by the Intermediate Value Theorem, there exist 74 and 75 such that x;(74) =
x1(T5) =M and x;(t) > M{ for Ty <t < Ts with T1 < Ty < T» and T> < T5 < T3. Therefore, there



83

is a T € (Ty,Ts) such that x;(T) is any arbitrary local maximum of x; (). Then it follows from
(3.4) that

0 = )'Cl(t)|,=7 < xi(T) [rlfauxl(Tf’c)] (3.7)

This leads to

(T —1)< L (3.8)

ail

Integrating (3.4) on the interval [T —t,T| , we have

h{ﬂ] < /T [ — avoe (s — 7)) ds

x1(T —7) T—1

T
‘/7 rlds
T—

= n7T

IN

which implies that

x(T) < x1(T —1)e"™ < —Len™ = M
ai

~ —

Since x1(T) is an arbitrary local maximum of x; (¢), we can conclude that there existsa 7 > T
such that x; (t) < M, for all 7 > T.

Secondly, suppose now that x;(¢) is oscillatory about M. By a procedure similar to the dis-
cussion above, we can conclude that there exists a T > T such that x1(t) <M, forallt > T.

We indicate briefly the derivation of the estimation x,(¢) < M, eventually for all large . We
have directly from second equation of the system (3.1) and x; (t) < M; (forr > f) that

arixi(t—7
)'Cz(t) = x2(t) {rzazz)@(t’c)%}
< x2(t) {rzazz)Cz(t’C)Jr a1 (t T)}
- 1+x(r—1)
1
{rz anx(t — 1) +az; [ 1+x1(t1:)}}
1
< {rz—azzxzt— T) +ap; [1_1+M1]}
a) M
= t — t— Z
X2( ) _rz a22X2( ’C)Jr 1 —i—M]]
1+M M
= x2(t) _I’z( Jrl _:Ztaﬂ ! azzxz(t’c)]
I M
= x(t) _—(FZJF?ZJ_)MIIJFFZ azzxz(t’t)}
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By a similar argument, we can verify that there existsa 7 > T such that

(rn+ax)M;+nr {(r2+a2])Ml+72 }
x2(t) : T
ax (1+M) 1+ M,
= M for t >T
Consequently
0<x1(t) <My, 0<xt) <M, for t >T 3.9)

This completes the proof.
The following result shows that the system (3.1) is uniformly persistent.
Theorem 3.1  Suppose that the system (3.1) satisfies the following:

(ri—anp)My+r > 0

3.10
(mn—a)Mi+r > 0 10

in which M; (i = 1,2) is defined by (3.3). Then the system (3.1) is uniformly persistent.

Proof:  Suppose x(t) = (x1(t),x2(¢)) is a solution of the system (3.1) which satisfies (3.2).
Then

apxa(t—1T
)'Cl(t) = xl(t) [rlallxl(t’t)%(t_‘c))]
M
> x(f) <r1a11M1fﬁMz2) for t > T +1 (3.11)

Integrating (3.11) on the interval [f — 1,7, we have

t t M
ln{L()] > / <r1a”M1m_z>ds
X1 (t — ‘C) f—1 1+ M

appM,
(rl —ap M — I +M2>

which implies that, forr > T + 1,

an,
x(t—=1) < x() -exp{ (”1 —ay My — T]Wz) T}
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If (3.10) holds, then

) = x(@) _rl —anx(t—1)— %]
> x(t) :r1 —ayx (t—1)— fljﬁ}
> xi(t) _Vl - fiﬁﬂi —ax (t)e_(rl_a“M‘_%)T]
= xi() % —anx (t)e_(r‘_a“Ml_%)T}
e O I e
= rix(t) [l—x}((]f)] for t >T+7

which implies that
liminfx;(t) > K| = m
f—o0

Thus, for large ¢, x;(t) > m;. By a procedure similar to the discussion above, we can verify
that, for large ¢,

(n-a)Mi+n -exp{<r2 —anM, — axlly >’C}
axn (1+M) 1+ M,

x2(t) >my =

Now, we let

D= {(Xl,xz)| m <xi<M;,i= 1,2}

Then 9D is a bounded compact region in Ri which has positive distance from coordinate planes.
From what has been discussed above, we obtain that there exists a 7** > 0, if > T**, then every
positive solution of the system (3.1) with initial conditions (3.2) eventually enters and remains in

the region D. The proof is completed.

3.2 Global Asymptotic Stability

In this section, we derive sufficient conditions which guarantee that the unique positive equilibrium
point E* of the system (3.1) with initial conditions (3.2) is globally asymptotically stable. Our

strategy in the proof is to construct a suitable Lyapunov functional. Before mention our result, we
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need the following notation:

Bii = an(l—auMiv),
a12(1+2x§)
= ——— 2 (] Myt
Bi2 T (I+anMi) ,
a21(1—|—2x’f)
= —— 271 M>T
Bai x (1+anM,t) |
]322 = azz(l—agzMz‘C).

where M; (i = 1,2) is defined by (3.3).

Theorem 3.2 If

Bi>0, i=1,2, (3.12)

and

B11B22 — B12P21 >0, (3.13)

then the unique positive equilibrium point E* of the system (3.1) with initial conditions (3.2) is

globally asymptotically stable.

Proof: Letx(t) = (x1(¢),x2(¢)) be any solution of the system (3.1) with initial conditions (3.2).
Define

z2(t) = (21(1),22(2))

by

(i=1,2). (3.14)
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It follows from (3.1) and (3.14) that

du() &)
dt x1(t)
1 alzxz(t—’t):|
= — .x(t — f—1)— =2
x1(t) x () [m ax(f =) 1 +x(t —17)
= ary ’lk~|» lal—i))?*] 7a11x*gzl(l*1) _ #g;‘c)ezﬂlﬂ
2 2\b—
= gt e ] - 92% [t
s [0 —1] - T [0
*\2
aiz (x3) (=)
—1 3.15
(1+25) [T+ 20— )] & ) G-19)
dz(t) ()
dt x2(t)
1 anixi (t’l?):|
= —— 0 |n- t—1)—
xa(t) xz(){rz az(t =) 1+xi(r—1)
= {azzx;Jr—;l ixT*] —apxie v — T +i21f T)ezl("”
xl 17—
- x| ,2(r=1) _ _% 21 (t=1) _
422 [e 1} 1+xi(t—7) [e 1}
%\ 2
a1 (xl) 21 (t—1)
—1 3.16
A +x) [ +x1(—7)] [e } (3.16)
Equation (3.15) can be rewritten as
dzi (1) 21 (t ai2%; 2 (t—1) a2 (XE)Z (r—n)
= — _t -1 2 1
dt i [e } 1+x(—1) {e }+(1+x§)[1+x2(t— )] [e }
+a11x [ez' zl(r 1:}
= —anxt {em } _anx; {em(l%) _ 1} + an (x3)° [61204) _ 1}
L+x(t—1) (I4+x3) [1+x2(t — )]
t
+a11XT/ el (S)—dilig )ds
—T
* *\2
= gt @ ] - 2% [y aiz (%) 200 _
anx {e } 1+x(t—1) {e }4_ (14+x35) [1+x2(t —7)] [e }
1 *
* 2(s) ] s [a—0 _q| - 42% [ n(s—1) _
+ai1x] /z—re { arixj {e 1} l—l—xg(s—‘c) {e 1}

P SRR
U 11007 g 1}}‘1

(3.17)
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Let

Vil(t) = |zu()] (3.18)

Then, by (3.17) and (3.18), the upper right Dini derivative of V;;(¢) along the solution of (3.15)

and (3.16) is given by

D+V1|(t) =

IN

dzy(t) .
chit( ) -signz; (t)
. = | ai(t) 7% 2
signz; (7) < arixy [e 1} 14+x2(t—1) {e 1}
an (x3)° [ezz(f—f) - 1}
(1+x5) [1 +x2(r —7)]

- / ’ ez1<s>{a11xT e 1] o anxy et 1]
—T

1+x(s—1)
*\2
ai2 (XZ) 22 (s—7)
-1 pd
TS 1 xlb—1)] & J pas
Cae [0 1] i SNCI 25 W P N O
anxy [e 1} signz; (7) T P [e 1] signz; ()

an (x3)°
(1) [+

t
+signz; (1) (a”x’f/ &1 {—anxT {ez‘(ﬁr) — 1}
—T

a12x§ {ezz(s—T) o 1}

* (t—1)] [eZZ(H) - 1} ‘signzi (1)

Cl4x(s—1)
%\2
+ 12 (%)) [eZ(S o 1} ds
(1+x3) [1 +x2(s = 7)]
—anxt eZ](Z)71‘+a X ezz(r‘c)l‘+a12(x2)2 2(1—1) 1‘
11X] 12X T4y
t
+(111XT/ el (){auxl 21 (st 71‘%»(112)6 2= _ 1‘
-1

ai (x3)*
1+x3

27 1‘}ds (3.19)
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By Theorem 3.1, we know that there exists a 7 > 0, such that x}e 0 = x, (t) <M, fort >T.

Hence for ¢t > T + 1, we have

D+V11(t) < 7a11x’1‘ 4l 0 _ 1‘+ Witzxz) ezz(rﬂ:) . 1‘
14x3
!
+‘111M1/ {alle ezl(S_T)—l‘Jraux; eZZ(S_T)—l‘

-
an ()C*)Z
212\V) | pnls=1) _ ‘ ds

1+x5

Define

t t
V]z(t) = a11M1/ /{anxT
t—1Js

eA1(0-1) 1‘ +apy

ezz(e—‘t) _ 1 ‘

an (x5)°
1+x3

0= _ ‘ } d0ds

then we have

D+V12(t) = ’C[a%]Mle

A (=7) _ 1‘ —i—analele

e2=7 _ 1 ‘

anaizM (XZ)Z
1+x3

t
*
*allMI/ {011)61
—T

ezz(rfr) -1 ‘]

el (s=7) _ 1‘ +a12x§

ezz(sfr) o 1‘

*\2
~epnt e““‘“‘l‘}ds
1+x5
Define
t
Vl3(t) == a%lMle’C/ eZl(S) _ 1‘ds
—7
(14 2x5 t
+M(I+QI]M|T)/ ezZ(s)_l‘ds
14+x5 i
then we have
D+V13(t) = a%lMle’C |: ezl(t) _ 1‘ _ ezl(t—t) o 1H
+M (1+ay M) [ et — 1‘ _|prlt=1) _ 1H
14x3

Now we define a Lyapunov functional Vi (z) as

Vi(t) = Vii(t)+Via(r) +Vis(r)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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Then we have from (3.20)-(3.25) that fort > T 4+

a12x2 (1 + 2)62)

D+V1(t) < —anxT ezl( I+ x

t)_l‘

2(t=7 —1‘+a11M1/ {anx1
—T

*\2
M 267 1‘}ds+a%1M1x’[T 1) 1‘ +apanpMxst|e2t ) — 1‘
I+x3
allalelr(x*)z !
—*2 2= _ 1‘ —a; M / {a”x’f A 1‘ +apxs 251 1‘
1+x5 -1
ai (x3)° 2
—227 | pnals=T) 1‘ ds+ay Mixit [ ) — 1‘ — |earl=T) — IH
I+x3
a12x2( _‘; .XQ) (1—|—011M1‘C)|: 2(1) _1} Zzl T) IH
I+x5
142
= —ay (1—anM)x} | — 1‘+L+*XZ)(1+¢111M11))6 ez2(’)fl‘
1+x5
= —Buxi|en®— 1‘ — Buioxs |2 — 1‘
Equation (3.16) can be rewritten as
dzz(t) { () azlxl
— _ * _ 1} |: 21 l T 1}
” anx; |e 71 e
*\ 2
any (Xl) [ezl(t T) }Jrazzx [ezz
(14x7) [1+x1(r = 7)]
. zz(z)_l} A{zllr 1}
a22%; [e L+x(t—
%\ 2
az1 (x7) [ 21 (t—7) /t dzz
4 +a X e ds
(1) [1+x (=) 22 )i
= _ * Zz(l)_l} A{mlt 1}
a22%; [e L+x(t—
a21 (xik) |:ezl(t—‘t) _ 1:|
(14x7) [T+ x1(r —7)]

t
+annxs / e20) {—azgxﬁ [em(“ﬂ — 1}
—T

,A [ 21 (s—1) _ 1}
1+xi(s—1) ¢

@1 (x*)Z 21(s—1) _
T T+ mG=7)] g 1}}‘”

(3.27)

s—T * 2
a1( —1‘+a12x2 e2

(s—1) _ 1‘

(3.26)
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Var(t) = |za(t)] (3.28)

Then, by (3.27) and (3.28), the upper right Dini derivative of V»;(¢) along the solution of (3.15)

and (3.16) is given by

DV (t) =

IN

dz(t) .

Z;t( ) -signz (t)

. = w2l _q] — LXT Al —
signzy (1) < axnx; [e 1} 14+x1(t—1) {e 1}

a21 (XT)Z em(f—T) _
(Hﬁﬂﬂ+n07ﬂ[ ]

t *

* 2(s) ) _ PTG N ) . N Y -

+ax; /t_Te { axnx, {e 1] [Txi(s—7) [e 1]
* 2
a2l (xl) 21 (s—7)

+ 1 —1]| d

(T+x) [T+ x1(5— )] & J pas
. . a1 xj _ .

—anx; |:eZZ(t) — 1i| . 51gn12(t) — m |:ezl(t T) _ 1:| . SlgnZZ(t)

ax (x})’
T x) [+

t
+ - signza (¢) (azzxﬁ/ £2() {—azz)@ {612(571:) _ 1}
-7

azxj ) [ezl(s—’c)il:|

* (t—1)] [em - 1} ‘signza(f)

Cl+x(s—1)
N ay (x})° [e G- 1} s
(1+x7) [T+ x1(s —7)]
a (x})*
—anxs ezz(z)fl‘JraleT em(r—r)fl‘Jr e o211 1‘
t
Jr‘122)53/ 6’2(){022)6 st —1‘+a21x e 1‘
-7

a (x})?
1+x7

emfﬂ—ﬂ}w (3.29)
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By Theorem 3.1, we know that there exists a T > 0, such that xﬁeﬁ(’) =x(t) <My fort >T.
Hence for ¢t > T + 1, we have

a2|xT (1 + 2x’f)

DVo (1) < —anxi|e?
() < 20X [+

01|+

eZ](f*‘C) -1 ‘

t
+(122M2/ {azzx 257 1‘ + anx] (s=7) _ 1‘
—7
ang (x*)z
@210) a1 ‘ ds (3.30)
1+x]
Define
t t
Vaalt) = azzMz/ / {a22x§ e2(0-7) _ 1‘ +(121XT e10-7) 1‘
I—TJs
any (x*)2
1) | (o) _ 1‘ d6ds 3.31)
1+x]
then we have
) azyaxnMy (XT)2
D™Vyt) = 1 [azzszﬁ 2l _ 1‘ +ax1anMax; |9 (=) _ 1‘ +v 1Y 1‘
X1
! ar (x})°
7(122M2/ {a22x2 2(s=1) _ 1‘ +a21x (=7 _ 1‘ + ezl(s_r) — 1‘ ds
-1 1 +xj
(3.32)
Define
t
V3(t) = a%zszZT/ ) — 1‘ds
-7
A 1124) 4ot / 1) — l‘ds (3.33)
1+ x] —1
then we have
D"Vas(t) = aMyxit [ el — 1‘ — |2t 1H
az1xy (1 +2XT) [ Z ‘ (t—1) _ H
—(1 M. 10 1 1
e (14 axM>7)
(3.34)
Now we define a Lyapunov functional V,(z) as
Vz(t) = Vzl(t)+V22(t)+V23(t) (3.35)

Then we have from (3.30)-(3.35) that fort > T+t
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D+Vz(t) < —aypx; g2 _ 1‘+ M oA1=7) _ 1‘
14 x]
t
+a22M2/ {a22x§ e2(=1) _ 1‘ +agx} eS1=1) 1‘
-7
)2
@21 ()" | ai(s-r) 1| Vas
14 x]
+azMaxst| e — 1‘ +aganMyxit|et 77 — 1‘
)2
Ayt ()" | ) _ |
1+x7
t
7‘122M2/ {‘122)@ &2l 1‘+a21x’f A=) 1‘
-7
)2
M oA _ 1‘}ds
I +x}
+a%2M2x§T [ 20 _ 1‘ _|elt=1) _ 1H

+a2]x’f (1 —I-*2)CT)
1 +x]
any (1 JrZXT)

= — (1 M>7T) x|
e (1 + anM,t)x]

(1 + azzMz’C) [

&A1) 1‘ _

G —7) _ 1H

G0 _ 1‘

—dan (1 —azzMz‘C)x§ 6’22([) - 1’

= —Pax

eZ] (Z) — 1‘ — ﬁzzxﬁ

20 1‘ (3.36)

According to assumptions (3.12) and (3.13), we know that B = (B;j)2x2 is an M-matrix (see

[1]); hence there exist positive constants p; (i = 1,2) such that

p1B11 +p2P21 =061 >0, p1Bi12+p2P22 =062 >0 (3.37)

Now define a Lyapunov functional V (z) as

V(t) = p1Vi(t) +paVa(t) (3.38)
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Then we have from (3.38), (3.26), (3.36), and (3.37) that fort > T 4+

DYV() = piD™Vi(r )+P2D+V2(t)
< [ |311X —1|— B12x§ ezz(f) — 1H
+p2 {—ﬁzle 10 — 1| = Boxj |21 — 1H

—(P1B11 +p2B2r) x] ff’z'(’)—l}

- (plBIZ + pZBZZ)XE gZZ(t) _ 1‘

= —81x A 1‘ — &3 &2

_ 1‘ (3.39)

Since the system (3.1) is uniformly persistent, one can see that there exist positive constants
m; (i=1,2)and a T* > T + 1 such that x;‘ezf(’) =x;(t) >m; (i=1,2) fort > T*. Using the Mean
Value Theorem, one obtains x* |¢%(") — 1| = xe% ) |z;(2)| > m; |z:(t)| (i = 1,2), where xe% () lies
between x;(¢) and x}. Let 8 = min{8;m;,32m; }. Then it follows from (3.39) that for r > T*

p—

DV() < =8}l — 1‘ — 8o |2 — 1‘
< =8y |z (t)] — damz 22(1)]
< =8(|lzi(®)]| + |2(0)]) (3.40)

Let w(s) = ds, then w is nonnegative continuous and nondecreasing, w(0) = 0 and w(s) > 0
for s > 0. It follow from (3.40) that fort > T*

DYV(r) < —=8(z1(0)]+]z2(r)])
< =8y/zi(1) +23(1)

—w(llz(®)1) (3.41)

Let u(s) = ps, where p = min{p1,p2}, then u is nonnegative continuous and nondecreasing,
u(0) =0, u(s) > 0 for s >0 and hm n u(s) = +oo. Now, we want to show that V(1) > u(]|z(t)]]). It
follow from (3.25), (3.35), and (3 38) that for ¢ > T*

V() = piVi(t) +p2Va(t)
= p1[Viu(t) +Via(t) + Vis()] + p2 [Va1 (¢) + Vaz (1) + Va3 (1)]
> piViu(t) +p2Var (1)
= pila(@)][+p2l2()]
2 p(lza(®)+]z2@)])
> py/a(0)+2()

u(llz(6)[]) (3.42)
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we can conclude from the Lyapunov-Kransovskii theorem (see [8, Theorem 5.1, p.27; Corol-
lary 5.2, p.30]) and (3.38) that the zero solution of (3.15) and (3.16) is globally asymptotically

stable, and hence the unique positive equilibrium point E* of the system (3.1) with initial condi-

tions (3.2) is globally asymptotically stable. This completes the proof.

4 Examples

In this section, we want to illustrate our results by some examples.

Example 4.1

Consider the following system:

x(t) = x(r) lle(t)lj_zii)(t)
() = xf) 1_2x2(t)_1f)(£)([)

.1

Comparing the system (4.1) with the system (2.1), we getry =r, =ajp =az; =l andaj; =ax =

2. So the system (4.1) has the unique positive equilibrium point E* = (%,

V3-1
2

). It is easy to

verify that the system (4.1) satisfies all assumptions in (2.4) and (2.6). From Lemma 2.2, we see

that the unique positive equilibrium point E* is locally asymptotically stable. Using Theorems 2.1

and 2.3, we know that the unique positive equilibrium point E* is globally asymptotically stable.

1

0.9

0.8

0.7

0.6

= 0.5

0.4

0.3

0.2

0.1

(0.2,0.8)
(0.8,0.7)
(0.1,0.2) (0.8,0.2)
L L L L L L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

X

Figure 4.1: Phase portrait of the system (4.1).
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Example 4.2  Consider the following system:

xi(t) = x(r) 12x1(t1)% "
() = xl) 1—2x2(t_1)_#(;f)1) :

Comparing the system (4.2) with the system (3.1), we get ry =, =app =ax; = 1 and a1 =
az; = 2. So the system (4.2) has the unique positive equilibrium point E* = (%, %) It
is easy to verify that the system (4.2) satisfies all assumptions in (3.3), (3.10), (3.12) and (3.13).
Using Theorem 3.1, we know that the system (3.2) is uniformly persistent. From Theorem 3.2, we
know that the unique positive equilibrium point E* is globally asymptotically stable provided that
Bi1 >0, B2 >0, and B11B22 — Bi2P21 > 0, where

Bl] = 2(1 —2M1T) s

B = (\/37—3)(1+2M1r) ,
B1 = (\/37— 3) (1+2M>1) |
ﬁzz = 2(1 —2M2T) s

M %ET,
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09 4

0.8

0.7

0.6

(0.1,0.2) (0.8,0.2)

0.1 4

0 ! ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%

Figure 4.2: Phase portrait of the system (4.2) with t = 0.1.
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