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Persistence and Global Stability on Competition
System with Time-Delay

Hsin-Chih Chen and Chao-Pao Ho∗

Abstract

In this paper, we study the dynamical behavior of a competition system with time delay. We first use
three different methods to analyze the global stability of the unique positive equilibrium point of the system
without time delay. Secondly, it is shown that the system with time delay is uniform persistent under some
appropriate conditions, and sufficient conditions are obtained for the global stability of the unique positive
equilibrium point of the system with time delay. Finally, we illustrative our results by some examples.

Keywords:competition system, equilibrium stability, Dulac’s criterion, Ponicaré-Bendixson theo-
rem, limit cycle, uniform persistence, Lyapunov functional, global asymptotic stability.

1 Introduction

In recent years, the application of theories of functional differential equations in mathematical
ecology has developed rapidly. Various mathematical models have been proposed in the study of
population dynamics, ecology and epidemic. Some of them are described as autonomous delay
differential equations. Many people are doing research on the dynamics of population with delays,
which is useful for the control of the population of mankind, animals and the environment. One of
the famous models for dynamics of population is the Lotka-Volterra competition system. Owing
to its theoretical and practical significance, the Lotka-Volterra systems have been studied exten-
sively [5,6,15]. There is a large volume of literature relevant to the theory of the Lotka-Volterra
systems and methods and results can be found in Gopalsamy [6], Kuang [8], Takuechi [11] and
the references therein.

Since time delays occur so often in nature, a number of models in ecology can be formulated
as systems of differential equations with time delays. One of the most important problems for
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this type of system is to analyze the effect of time delays on the stability of the system. From the
literature on ecological models with time delays, we have known that for some systems [3,15],
the stability switches many times and the systems will eventually become unstable when time
delays increase. While for other systems [12,14], there will be no change in uniform persistence
or permanence of the systems when the time delays vary. Uniform persistence or permanence
concerning the long time survival of a population is a more important concept of stability from the
viewpoint of mathematical ecology.

In this paper, we consider the competition system with time delay,

ẋ1(t) = x1(t)
[
r1 −a11x1(t − τ)− a12x2(t−τ)

1+x2(t−τ)

]

ẋ2(t) = x2(t)
[
r2 −a22x2(t − τ)− a21x1(t−τ)

1+x1(t−τ)

] (1.1)

with initial conditions

xi(t) = φi(t) ≥ 0, t ∈ [−τ,0],φi(0) > 0, i = 1,2 (1.2)

where · = d/dt, ri, ai j (i, j = 1,2), and τ are positive constants. φi(t)(i = 1,2) are continuous
bounded functions on the interval [−τ,0]. x1(t) and x2(t) denote the population densities (or
biomasses) of two species competing for a common pool of resources in a temporally uniform
environment.

In this paper, we determine sufficient conditions on the parameters of the system that ensure
uniform persistence and globally asymptotic stability of the system. The present paper is organized
as follows.

In section 2 we analyze the system (2.1). We first propose our system, and obtain positivity
and boundedness results. Next, the global stability property of the system (2.1) is established by
the application of the Dulac’s criterion plus Poincaré-Bendixson theorem, the construction of the
Lyapunov function or stable limit cycle analysis.

In section 3 we analyze the system (3.1). First of all, we give conditions for uniform persistence
to hold for the systems (3.1) and (3.2). Next, provides sufficient conditions for the unique positive
equilibrium point of the system (3.1) to be globally asymptotically stable.

In section 4 we give two suitable examples to show the result in the sections 2 and 3, respec-
tively.
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2 The System without Time Delay

Consider the following competition system

ẋ1(t) = x1(t)
[

r1 −a11x1(t)−
a12x2(t)
1+ x2(t)

]
≡ f1(x1,x2)

ẋ2(t) = x2(t)
[

r2 −a22x2(t)−
a21x1(t)
1+ x1(t)

]
≡ f2(x1,x2)

(2.1)

where · = d/dt, ri, ai j (i, j = 1,2) are positive constants. x1(t) and x2(t) denote the population
densities (or biomasses) of two species competing for a common pool of resources in a temporally
uniform environment.

2.1 Local Stability

Clearly, E0 ≡ (0,0), E1 ≡ (r1/a11,0), and E2 ≡ (0,r2/a22) are the equilibrium points of the system
(2.1). On the other hand, let E∗ ≡ (x∗1,x

∗
2) be the unique positive equilibrium point of the system

(2.1).

Remark 2.1 If

r2 > (a21 − r2)x∗1 (2.2)

and

α1 < 0, α2 6= 0, α3 > 0, where (2.3)

α1 = a11a21 −a11a22− r2a11

α2 = r1a22 + r1r2 − r2a12− r1a21− r2a11 −a11a22 +a12a21

α3 = r1a22 + r1r2 − r2a12

hold, then E∗ is the unique positive equilibrium point of the system (2.1).

Firstly, we discuss the local stability of equilibrium points of the system (2.1) by the Hartman-
Grobman theorem. Secondly, we use three different methods to analyze the global stability of the
unique positive equilibrium point E∗ of the system (2.1).

Now let us study the local behavior of the system (2.1) at equilibrium points E0, E1, E2 and
E∗. The Jacobian matrix of the system (2.1) take the form

J ≡




r1 −2a11x1 −
a12x2

1+ x2
− a12x1

(1+ x2)
2

− a21x2

(1+ x1)
2 r2 −2a22x2 −

a21x1

1+ x1



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The Jacobian matrix J0 ≡ J(0,0) of the system (2.1) at E0 takes the form of

J0 =

[
r1 0
0 r2

]

Since det(J0) = r1r2 > 0 and trace(J0) = r1 + r2 > 0, the equilibrium point E0 is unstable.

Lemma 2.1

(a) If

r2 >
r1a21

r1 +a11
(2.4)

then the equilibrium point E1 is a saddle point. And we know

Γ1 = {(x1,x2)| x1 > 0 , x2 = 0 }

is the stable manifold of the equilibrium point E1.

(b) If

r2 <
r1a21

r1 +a11
(2.5)

then the equilibrium point E1 is locally asymptotically stable.

Proof: The Jacobian matrix J1 ≡ J(r1/a11,0) of the system (2.1) at E1 takes the form of

J1 =




−r1 − r1a12

a11

0 r2 −
r1a21

r1 +a11




Since

det(J1) = −r1

(
r2 −

r1a21

r1 +a11

)

and

trace(J1) = −r1 + r2 −
r1a21

r1 +a11

Case 1. r2 >
r1a21

r1 +a11
In this case,

det(J1) = −r1

(
r2 −

r1a21

r1 +a11

)
< 0

then the equilibrium point E1 is a saddle point. And we know

Γ1 = {(x1,x2)| x1 > 0 , x2 = 0 }
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is the stable manifold of the equilibrium point E1.
Case 2. r2 <

r1a21

r1 +a11
In this case,

det(J1) = −r1

(
r2 −

r1a21

r1 +a11

)
> 0

and
trace(J1) = −r1 + r2 −

r1a21

r1 +a11
< 0

then the equilibrium point E1 is locally asymptotically stable. This completes the proof.
The Jacobian matrix J2 ≡ J(0,r2/a22) of the system (2.1) at E2 takes the form of

J2 =




r1 −
r2a12

r2 +a22
0

− r2a21

a22
−r2




From (2.3), we know

det(J2) = −r2

(
r1 −

r2a12

r2 +a22

)
< 0

then the equilibrium point E2 is a saddle point. And we know

Γ2 = {(x1,x2)| x1 = 0 , x2 > 0 }

is the stable manifold of the equilibrium point E2.

Lemma 2.2 If

(1+ x∗1)
2 (1+ x∗2)

2 >
a12a21

a11a22
(2.6)

then the unique positive equilibrium point E∗ = (x∗1,x
∗
2) is locally asymptotically stable.

Proof: The Jacobian matrix J∗ of the system (2.1) at E∗ takes the form of

J∗ =




−a11x∗1 − a12x∗1
(1+ x∗2)

2

− a21x∗2
(1+ x∗1)

2 −a22x∗2




Since

det(J∗) = (a11x∗1) (a22x∗2)−
a21x∗2

(1+ x∗1)
2 · a12x∗1

(1+ x∗2)
2

= a11a22x∗1x∗2 −
a12a21x∗1x∗2

(1+ x∗1)
2 (1+ x∗2)

2

= x∗1x∗2

[
a11a22−

a12a21

(1+ x∗1)
2 (1+ x∗2)

2

]

> 0
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and

trace(J∗) = −a11x∗1 −a22x∗2

= −(a11x∗1 +a22x∗2)

< 0

the unique positive equilibrium point E∗ is locally asymptotically stable. This completes the proof.

Lemma 2.3 All solutions (x1(t),x2(t)) of the system (2.1) are positive and bounded.

Proof: Firstly, we want to show that all solutions (x1(t),x2(t)) of the system (2.1) are positive.
In other works, if the initial point (x1(0),x2(0)) is in the first quadrant, then (x1(t),x2(t)) is also
in the first quadrant for all t > 0. Since x1-axis and x2-axis are the solutions of the system (2.1),
then the trajectory of the solution (x1(t),x2(t)) with initial point (x1(0),x2(0)) in the first quadrant
can not cross with x1-axis and x2-axis by the uniqueness of the solution. Hence all solutions
(x1(t),x2(t)) of the system (2.1) are positive.

Secondly, we want to show that all solutions (x1(t),x2(t)) of the system (2.1) are bounded.
That is, we want to show that xi(t) < Ki ≡ max{xi(0),ri/aii} (i = 1,2) for all t ≥ 0. Now, show
that x1(t) < K1 for all t ≥ 0. The proof for x2(t) is similar. For x1(t), suppose there exists t∗ > 0
such that x1(t∗) = K1 and ẋ1(t∗) ≥ 0. Thus

ẋ1(t∗) = x1(t∗)
[

r1 −a11x1(t∗)−
a12x2(t∗)
1+ x2(t∗)

]

= K1

[
r1 −a11K1 −

a12x2(t∗)
1+ x2(t∗)

]

< K1 (r1 −a11K1)

≤ 0

This contradicts ẋ1(t∗) ≥ 0. Hence x1(t) < K1 for all t ≥ 0. Similarly, we can show that
x2(t) < K2 ≡ max{x2(0),r2/a22} for all t ≥ 0. Therefore, all solutions (x1(t),x2(t)) of the system
(2.1) are bounded. This completes the proof.

2.2 Global Stability

In this section, we want to use three different methods to analyze the global stability of the unique
positive equilibrium point E∗ of the system (2.1).

(i) Dulac’s criterion plus Poincaré-Bendixson theorem

(ii) Lyapunov function

(iii) Stable limit cycle analysis
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At first, we use the method (i) to analyze the system (2.1).

Theorem 2.1 If (2.3), (2.4) and (2.6) hold, then the unique positive equilibrium point E ∗ of

the system (2.1) is globally asymptotically stable.

Proof: From Lemma 2.3 the solution (x1(t),x2(t)) of the system (2.1) is positive and bounded.
Let

H(x1,x2) =
1

x1x2
,x1,x2 > 0

Then

∂
∂x1

(H f1)+
∂

∂x2
(H f2)

=
∂

∂x1

{
H

[
x1

(
r1 −a11x1 −

a12x2

1+ x2

)]}

+
∂

∂x2

{
H

[
x2

(
r2 −a22x2 −

a21x1

1+ x1

)]}

=
∂

∂x1

[
1
x2

(
r1 −a11x1 −

a12x2

1+ x2

)]

+
∂

∂x2

[
1
x1

(
r2 −a22x2 −

a21x1

1+ x1

)]

= −a11

x2
− a22

x1

= −
(

a11

x2
+

a22

x1

)

< 0

Hence by the Dulac’s criterion, there is no closed orbit in the first quadrant. By Lemma 2.2,
we know that the unique positive equilibrium point E∗ is locally asymptotically stable. By Lemma
2.3 and the Poincaré-Bendixson theorem, it suffices to show that the unique positive equilibrium
point E∗ is globally asymptotically stable in the first quadrant. This completes the proof.

Secondly, we want to analyze the global stability of the unique positive equilibrium point E ∗

of the system (2.1) by using the method (ii).

Theorem 2.2 If

x∗1 ≥
a21 −a22

a22
, x∗2 ≥

a12−a11

a11
(2.7)

then the unique positive equilibrium point E∗ ≡ (x∗1,x
∗
2) of the system (2.1) is globally asymptoti-

cally stable.

Proof: Construct the following Lyapunov function

V (x1,x2) = V1(x1,x2)+V2(x1,x2)
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where

V1(x1,x2) =
1+ x∗2

a12

[
x1 − x∗1 − x∗1 ln

x1

x∗1

]

V2(x1,x2) =
1+ x∗1

a21

[
x2 − x∗2 − x∗2 ln

x2

x∗2

]

on G = {(x1,x2)| x1 > 0 , x2 > 0 }. It is obvious that V (x1,x2) ∈ C 1 (G,R), V (x∗1,x
∗
2) = 0 and

V (x1,x2) > 0 for (x1,x2) ∈ G−{(x∗1,x∗2)}. Then the time derivative of Vi(x1,x2), i = 1,2, along
trajectory of the system (2.1) is given by

V̇1(x1,x2) =
1+ x∗2

a12

[
ẋ1 − x∗1 ·

x∗1
x1

· ẋ1

x∗1

]

=
1+ x∗2

a12
· ẋ1

x1
(x1 − x∗1)

=
1+ x∗2

a12

(
r1 −a11x1 −

a12x2

1+ x2

)
(x1 − x∗1)

=
1+ x∗2

a12

(
a11x∗1 +

a12x∗2
1+ x∗2

−a11x1 −
a12x2

1+ x2

)
(x1 − x∗1)

=
a11 (1+ x∗2)x∗1x1

a12
− a11 (1+ x∗2)(x∗1)

2

a12
+ x1x∗2 − x∗1x∗2 −

a11 (1+ x∗2)x2
1

a12

+
a11 (1+ x∗2)x∗1x1

a12
− (1+ x∗2)x1x2

1+ x2
+

(1+ x∗2)x∗1x2

1+ x2

= −a11 (1+ x∗2)
a12

(x1 − x∗1)
2 − (x1 − x∗1) (x2 − x∗2)

1+ x2
(2.8)

and

V̇2(x1,x2) =
1+ x∗1

a21

[
ẋ2 − x∗2 ·

x∗2
x2

· ẋ2

x∗2

]

=
1+ x∗1

a21
· ẋ2

x2
(x2 − x∗2)

=
1+ x∗1

a21

(
r2 −a22x2 −

a21x1

1+ x1

)
(x2 − x∗2)

=
1+ x∗1

a21

(
a22x∗2 +

a21x∗1
1+ x∗1

−a22x2 −
a21x1

1+ x1

)
(x2 − x∗2)

=
a22 (1+ x∗1)x∗2x2

a21
− a22 (1+ x∗1)(x∗2)

2

a21
+ x∗1x2 − x∗1x∗2 −

a22 (1+ x∗1)x2
2

a21

+
a22 (1+ x∗1)x∗2x2

a21
− (1+ x∗1)x1x2

1+ x1
+

(1+ x∗1)x1x∗2
1+ x1

= −a22 (1+ x∗1)
a21

(x2 − x∗2)
2 − (x1 − x∗1) (x2 − x∗2)

1+ x1
(2.9)
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Thus the derivative of V (x1,x2) is given by

V̇ (x1,x2) = V̇1(x1,x2)+ V̇2(x1,x2)

= −a11 (1+ x∗2)
a12

(x1 − x∗1)
2 − (x1 − x∗1)(x2 − x∗2)

1+ x2

−a22 (1+ x∗1)
a21

(x2 − x∗2)
2 − (x1 − x∗1)(x2 − x∗2)

1+ x1

= −a11 (1+ x∗2)
a12

(x1 − x∗1)
2 − a22 (1+ x∗1)

a21
(x2 − x∗2)

2

−
(

1
1+ x1

+
1

1+ x2

)
(x1 − x∗1) (x2 − x∗2)

= −1
2

(
1

1+ x1
+

1
1+ x2

)[
(x1 − x∗1)

2 +(x2 − x∗2)
2 +2(x1 − x∗1)(x2 − x∗2)

]

+
1
2

(
1

1+ x1
+

1
1+ x2

)
(x1 − x∗1)

2 − a11 (1+ x∗2)
a12

(x1 − x∗1)
2

+
1
2

(
1

1+ x1
+

1
1+ x2

)
(x2 − x∗2)

2 − a22 (1+ x∗1)
a21

(x2 − x∗2)
2

= −1
2

(
1

1+ x1
+

1
1+ x2

)
[(x1 − x∗1)+(x2 − x∗2)]

2

−
[

a11 (1+ x∗2)
a12

− 1
2

(
1

1+ x1
+

1
1+ x2

)]
(x1 − x∗1)

2

−
[

a22 (1+ x∗1)
a21

− 1
2

(
1

1+ x1
+

1
1+ x2

)]
(x2 − x∗2)

2

< −1
2

(
1

1+ x1
+

1
1+ x2

)
[(x1 − x∗1)+(x2 − x∗2)]

2

−
[

a11 (1+ x∗2)
a12

−1
]
(x1 − x∗1)

2 −
[

a22 (1+ x∗1)
a21

−1
]
(x2 − x∗2)

2

< 0

Hence V̇ (x1,x2) < 0 on G. Therefore, it follows from Lyapunov-LaSalle theorem that the
unique positive equilibrium point E∗ of the system (2.1) is globally asymptotically stable on G.
This completes the proof.

Finally, we introduce the method (iii) to prove the global stability of the unique positive equi-
librium point E∗ of the system (2.1).

Theorem 2.3 If (2.3), (2.4) and (2.6) hold, then the unique positive equilibrium point E ∗ of

the system (2.1) is globally asymptotically stable.

Proof: It suffices to show that the system (2.1) has no closed orbit in the first quadrant. Suppose
on the contrary that there is a T -periodic orbit Γ = {(x1(t),x2(t))| 0 ≤ t ≤ T } in the first quadrant.
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Then

∆ =

∫

Γ

(
∂ f1

∂x1
+

∂ f2

∂x2

)
ds

=
∫ T

0

[
∂

∂x1
f1(x1,x2)+

∂
∂x2

f2(x1,x2)

]∣∣∣∣ x1=x1(t)

x2=x2(t)

dt

=

∫ T

0

{
∂

∂x1

[
x1

(
r1 −a11x1 −

a12x2

1+ x2

)]

+
∂

∂x2

[
x2

(
r2 −a22x2 −

a21x1

1+ x1

)]}∣∣∣∣ x1=x1(t)

x2=x2(t)

dt

=

∫ T

0

∂
∂x1

[
x1

(
r1 −a11x1 −

a12x2

1+ x2

)]∣∣∣∣ x1=x1(t)

x2=x2(t)

dt

+
∫ T

0

∂
∂x2

[
x2

(
r2 −a22x2 −

a21x1

1+ x1

)]∣∣∣∣ x1=x1(t)

x2=x2(t)

dt

=

∫ T

0

[(
r1 −a11x1 −

a12x2

1+ x2

)
−a11x1

]∣∣∣∣ x1=x1(t)

x2=x2(t)

dt

+
∫ T

0

[(
r2 −a22x2 −

a21x1

1+ x1

)
−a22x2

]∣∣∣∣ x1=x1(t)

x2=x2(t)

dt

=

∫ T

0

ẋ1(t)
x1(t)

dt −a11

∫ T

0
x1(t)dt +

∫ T

0

ẋ2(t)
x2(t)

dt −a22

∫ T

0
x2(t)dt

=

∫ x1(T)

x1(0)

1
x1

dx1 −a11

∫ T

0
x1(t)dt +

∫ x2(T)

x2(0)

1
x2

dx2 −a22

∫ T

0
x2(t)dt

Since Γ is a T -periodic,

∫ x1(T)

x1(0)

1
x1

dx1 = 0 and
∫ x2(T )

x2(0)

1
x2

dx2 = 0

Hence we have

∆ = −
∫ T

0
[a11x1(t)+a22x2(t)]dt

< 0

This indicates that all closed orbits of the system (2.1) in the first quadrant are orbitally stable.
Since every closed orbit is orbitally stable and then there is an unique stable limit cycle in the first
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quadrant. That is, the unique positive equilibrium point E∗ is unstable. However, by Lemma 2.2,
the unique positive equilibrium point E∗ is locally asymptotically stable. Thus there is no closed
orbit in the first quadrant. By Lemma 2.3 and the Poincaré-Bendixson theorem, it suffices to show
that the unique positive equilibrium point E∗ of the system (2.1) is globally asymptotically stable
in the first quadrant. This completes the proof.

3 The System with Time Delay

Consider the following competition system with time delay

ẋ1(t) = x1(t)
[

r1 −a11x1(t − τ)− a12x2(t − τ)
1+ x2(t − τ)

]

ẋ2(t) = x2(t)
[

r2 −a22x2(t − τ)− a21x1(t − τ)
1+ x1(t − τ)

] (3.1)

with initial conditions

xi(t) = φi(t) ≥ 0, t ∈ [−τ,0], φi(0) > 0, i = 1,2 (3.2)

where · = d/dt, ri, ai j (i, j = 1,2), and τ are positive constants. φi(t)(i = 1,2) are continuous
bounded functions on the interval [−τ,0]. x1(t) and x2(t) denote the population densities (or
biomasses) of two species competing for a common pool of resources in a temporally uniform
environment. Clearly, the equilibrium points of the system (3.1) are the same as in the system
(2.1).

3.1 Uniform Persistence

The following lemmas are elementary and are concerned with the qualitative nature of solutions
of the system (3.1) with initial conditions (3.2).

Lemma 3.1 Solutions of the system (3.1) with initial conditions (3.2) remains positive for all

t ≥ 0.

Proof: We want to show that all solutions (x1(t),x2(t)) of the system (3.1) with initial condi-
tions (3.2) are positive. In other works, if the initial point (x1(0),x2(0)) is in the first quadrant, then
(x1(t),x2(t)) is also in the first quadrant for all t > 0. Since x1-axis and x2-axis are the solutions of
the system (3.1) with initial conditions (3.2), then the trajectory of the solution (x1(t),x2(t)) with
initial point (x1(0),x2(0)) in the first quadrant can not cross with x1-axis and x2-axis by the unique-
ness of the solution. Hence all solutions (x1(t),x2(t)) of the system (3.1) with initial conditions
(3.2) are positive. This completes the proof.
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Lemma 3.2 Let (x1(t),x2(t)) denote any solution of the system (3.1) with initial conditions

(3.2). Then

0 < xi(t) ≤ Mi (i = 1,2) (3.3)

eventually for all large t, where

M1 =
r1

a11
er1τ

M2 =
(r2 +a21)M1 + r2

a22 (1+M1)
· exp

{
(r2 +a21)M1 + r2

1+M1
τ
}

Proof: By Lemma 3.1, we know that the solutions of the system (3.1) with initial conditions
(3.2) are positive, and hence, by first equation of the system (3.1),

ẋ1(t) = x1(t)
[

r1 −a11x1(t − τ)− a12x2(t − τ)
1+ x2(t − τ)

]

≤ x1(t) [r1 −a11x1(t − τ)] (3.4)

Taking M∗
1 = r1

a11
(h1 +1), where 0 < h1 < er1τ − 1. Firstly, suppose x1(t) is not oscillatory

about M∗
1 . That is, there exists a T ∗ > 0 such that either

x1(t) < M∗
1 for t > T ∗ (3.5)

or

x1(t) > M∗
1 for t > T ∗ (3.6)

If (3.5) holds then (3.3) follows. Suppose (3.6) holds, then

ẋ1(t) ≤ x1(t) [r1 −a11x1 (t − τ)]

< x1(t)(r1 −a11M∗
1)

< −r1h1x1(t) for t ≥ T ∗ + τ

Therefore,

0 < x1(t) < x1(0)e−r1h1t → 0 as t → 0

That is, lim
t→∞

x1(t) = 0, by the Squeeze Theorem. It contradicts to (3.6). So, there must exist a
T1 ≥ T ∗ such that x1(T1) ≤ M∗

1 . If x1(t) ≤ M∗
1 for all t ≥ T1, then (3.3) follows. If not, then there

must exist a T2 > T1 such that x1(T2) > M∗
1 . Therefore, there exists a T3 > T2 such that x1(T3)≤M∗

1

by above discussion. By above, we know that x1(T1) ≤ M∗
1 , x1(T2) > M∗

1 , and x1(T3) ≤ M∗
1 where

T1 < T2 < T3. Then, by the Intermediate Value Theorem, there exist T4 and T5 such that x1(T4) =

x1(T5) = M∗
1 and x1(t) > M∗

1 for T4 < t < T5 with T1 < T4 < T2 and T2 < T5 < T3. Therefore, there
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is a T ∈ (T4,T5) such that x1(T ) is any arbitrary local maximum of x1(t). Then it follows from
(3.4) that

0 = ẋ1(t)|t=T ≤ x1(T )
[
r1 −a11x1(T − τ)

]
(3.7)

This leads to

x1(T − τ) ≤ r1

a11
(3.8)

Integrating (3.4) on the interval [T − τ,T ] , we have

ln
[

x1(T )

x1(T − τ)

]
≤

∫ T

T−τ
[r1 −a11x1(s− τ)]ds

≤
∫ T

T−τ
r1ds

= r1τ

which implies that

x1(T ) ≤ x1(T − τ)er1τ ≤ r1

a11
er1τ = M1

Since x1(T ) is an arbitrary local maximum of x1(t), we can conclude that there exists a T̂ ≥ T

such that x1(t) ≤ M1 for all t > T̂ .

Secondly, suppose now that x1(t) is oscillatory about M∗
1 . By a procedure similar to the dis-

cussion above, we can conclude that there exists a T̃ ≥ T̂ such that x1(t) ≤ M1 for all t ≥ T̃ .

We indicate briefly the derivation of the estimation x2(t) ≤ M2 eventually for all large t. We
have directly from second equation of the system (3.1) and x1(t) ≤ M1 (for t ≥ T̃ ) that

ẋ2(t) = x2(t)
[

r2 −a22x2(t − τ)− a21x1(t − τ)
1+ x1(t − τ)

]

≤ x2(t)
[

r2 −a22x2(t − τ)+
a21x1(t − τ)
1+ x1(t − τ)

]

= x2(t)
{

r2 −a22x2(t − τ)+a21

[
1− 1

1+ x1(t − τ)

]}

≤ x2(t)
{

r2 −a22x2(t − τ)+a21

[
1− 1

1+M1

]}

= x2(t)
[

r2 −a22x2(t − τ)+
a21M1

1+M1

]

= x2(t)
[

r2 (1+M1)+a21M1

1+M1
−a22x2(t − τ)

]

= x2(t)
[
(r2 +a21)M1 + r2

1+M1
−a22x2(t − τ)

]
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By a similar argument, we can verify that there exists a T > T̃ such that

x2(t) ≤ (r2 +a21)M1 + r2

a22 (1+M1)
· exp

{
(r2 +a21)M1 + r2

1+M1
τ
}

= M2 for t > T

Consequently

0 < x1(t) ≤ M1 , 0 < x2(t) ≤ M2 for t ≥ T (3.9)

This completes the proof.

The following result shows that the system (3.1) is uniformly persistent.

Theorem 3.1 Suppose that the system (3.1) satisfies the following:

(r1 −a12)M2 + r1 > 0
(r2 −a21)M1 + r2 > 0

(3.10)

in which Mi (i = 1,2) is defined by (3.3). Then the system (3.1) is uniformly persistent.

Proof: Suppose x(t) = (x1(t),x2(t)) is a solution of the system (3.1) which satisfies (3.2).
Then

ẋ1(t) = x1(t)
[

r1 −a11x1(t − τ)− a12x2(t − τ)
1+ x2(t − τ)

]

≥ x1(t)
(

r1 −a11M1 −
a12M2

1+M2

)
for t ≥ T + τ (3.11)

Integrating (3.11) on the interval [t − τ, t], we have

ln
[

x1(t)
x1(t − τ)

]
≥

∫ t

t−τ

(
r1 −a11M1 −

a12M2

1+M2

)
ds

=

(
r1 −a11M1 −

a12M2

1+M2

)
τ

which implies that, for t ≥ T + τ,

x1(t − τ) ≤ x1(t) · exp
{
−

(
r1 −a11M1 −

a12M2

1+M2

)
τ
}
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If (3.10) holds, then

ẋ1(t) = x1(t)
[

r1 −a11x1(t − τ)− a12x2(t − τ)
1+ x2(t − τ)

]

≥ x1(t)
[

r1 −a11x1(t − τ)− a12M2

1+M2

]

≥ x1(t)
[

r1 −
a12M2

1+M2
−a11x1(t)e

−
(

r1−a11M1−
a12M2
1+M2

)
τ
]

= x1(t)
[
(r1 −a12)M2 + r1

1+M2
−a11x1(t)e

−
(

r1−a11M1−
a12M2
1+M2

)
τ
]

=
(r1 −a12)M2 + r1

1+M2
x1(t)


1− x1(t)

(r1−a12)M2+r1
1+M2
a11

e
(

r1−a11M1−
a12M2
1+M2

)
τ




≡ r∗1x1(t)
[

1− x1(t)
K∗

1

]
for t ≥ T + τ

which implies that

liminf
t→∞

x1(t) ≥ K∗
1 = m1

Thus, for large t, x1(t) ≥ m1. By a procedure similar to the discussion above, we can verify
that, for large t,

x2(t) ≥ m2 =
(r2 −a21)M1 + r2

a22 (1+M1)
· exp

{(
r2 −a22M2 −

a21M1

1+M1

)
τ
}

Now, we let

D = {(x1,x2)| mi ≤ xi ≤ Mi , i = 1,2 }

Then D is a bounded compact region in R
2
+ which has positive distance from coordinate planes.

From what has been discussed above, we obtain that there exists a T ∗∗ > 0, if t > T ∗∗, then every
positive solution of the system (3.1) with initial conditions (3.2) eventually enters and remains in
the region D. The proof is completed.

3.2 Global Asymptotic Stability

In this section, we derive sufficient conditions which guarantee that the unique positive equilibrium
point E∗ of the system (3.1) with initial conditions (3.2) is globally asymptotically stable. Our
strategy in the proof is to construct a suitable Lyapunov functional. Before mention our result, we
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need the following notation:

β11 = a11 (1−a11M1τ) ,

β12 = −a12 (1+2x∗2)
1+ x∗2

(1+a11M1τ) ,

β21 = −a21 (1+2x∗1)
1+ x∗1

(1+a22M2τ) ,

β22 = a22 (1−a22M2τ) .

where Mi (i = 1,2) is defined by (3.3).

Theorem 3.2 If

βii > 0 , i = 1,2, (3.12)

and

β11β22 −β12β21 > 0 , (3.13)

then the unique positive equilibrium point E∗ of the system (3.1) with initial conditions (3.2) is

globally asymptotically stable.

Proof: Let x(t) = (x1(t),x2(t)) be any solution of the system (3.1) with initial conditions (3.2).
Define

z(t) = (z1(t),z2(t))

by

zi(t) = ln
xi(t)
x∗i

(i = 1,2). (3.14)
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It follows from (3.1) and (3.14) that

dz1(t)
dt

=
ẋ1(t)
x1(t)

=
1

x1(t)
· x1(t)

[
r1 −a11x1(t − τ)− a12x2(t − τ)

1+ x2(t − τ)

]

=

[
a11x∗1 +

a12x∗2
1+ x∗2

]
−a11x∗1ez1(t−τ) − a12x∗2

1+ x2(t − τ)
ez2(t−τ)

= −a11x∗1
[
ez1(t−τ)−1

]
− a12x∗2

1+ x2(t − τ)

[
ez2(t−τ)−1

]

+
a12 (x∗2)

2

(1+ x∗2) [1+ x2(t − τ)]

[
ez2(t−τ) −1

]
(3.15)

dz2(t)
dt

=
ẋ2(t)
x2(t)

=
1

x2(t)
· x2(t)

[
r2 −a22x2(t − τ)− a21x1(t − τ)

1+ x1(t − τ)

]

=

[
a22x∗2 +

a21x∗1
1+ x∗1

]
−a22x∗2ez2(t−τ) − a21x∗1

1+ x1(t − τ)
ez1(t−τ)

= −a22x∗2
[
ez2(t−τ)−1

]
− a21x∗1

1+ x1(t − τ)

[
ez1(t−τ)−1

]

+
a21 (x∗1)

2

(1+ x∗1) [1+ x1(t − τ)]

[
ez1(t−τ) −1

]
(3.16)

Equation (3.15) can be rewritten as

dz1(t)
dt

= −a11x∗1
[
ez1(t) −1

]
− a12x∗2

1+ x2(t − τ)

[
ez2(t−τ) −1

]
+

a12 (x∗2)
2

(1+ x∗2) [1+ x2(t − τ)]

[
ez2(t−τ)−1

]

+a11x∗1
[
ez1(t) − ez1(t−τ)

]

= −a11x∗1
[
ez1(t) −1

]
− a12x∗2

1+ x2(t − τ)

[
ez2(t−τ) −1

]
+

a12 (x∗2)
2

(1+ x∗2) [1+ x2(t − τ)]

[
ez2(t−τ)−1

]

+a11x∗1

∫ t

t−τ
ez1(s) dz1(s)

ds
ds

= −a11x∗1
[
ez1(t) −1

]
− a12x∗2

1+ x2(t − τ)

[
ez2(t−τ) −1

]
+

a12 (x∗2)
2

(1+ x∗2) [1+ x2(t − τ)]

[
ez2(t−τ)−1

]

+a11x∗1

∫ t

t−τ
ez1(s)

{
−a11x∗1

[
ez1(s−τ)−1

]
− a12x∗2

1+ x2(s− τ)

[
ez2(s−τ)−1

]

+
a12 (x∗2)

2

(1+ x∗2) [1+ x2(s− τ)]

[
ez2(s−τ)−1

]}
ds

(3.17)
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Let

V11(t) = |z1(t)| (3.18)

Then, by (3.17) and (3.18), the upper right Dini derivative of V11(t) along the solution of (3.15)
and (3.16) is given by

D+V11(t) =
dz1(t)

dt
· signz1(t)

= signz1(t) ·
(
−a11x∗1

[
ez1(t) −1

]
− a12x∗2

1+ x2(t − τ)

[
ez2(t−τ) −1

]

+
a12 (x∗2)

2

(1+ x∗2) [1+ x2(t − τ)]

[
ez2(t−τ) −1

]

+a11x∗1

∫ t

t−τ
ez1(s)

{
−a11x∗1

[
ez1(s−τ)−1

]
− a12x∗2

1+ x2(s− τ)

[
ez2(s−τ)−1

]

+
a12 (x∗2)

2

(1+ x∗2) [1+ x2(s− τ)]

[
ez2(s−τ)−1

]}
ds

)

= −a11x∗1
[
ez1(t) −1

]
· signz1(t)−

a12x∗2
1+ x2(t − τ)

[
ez2(t−τ) −1

]
· signz1(t)

+
a12 (x∗2)

2

(1+ x∗2) [1+ x2(t − τ)]

[
ez2(t−τ) −1

]
· signz1(t)

+signz1(t) ·
(

a11x∗1

∫ t

t−τ
ez1(s)

{
−a11x∗1

[
ez1(s−τ)−1

]

− a12x∗2
1+ x2(s− τ)

[
ez2(s−τ)−1

]

+
a12 (x∗2)

2

(1+ x∗2) [1+ x2(s− τ)]

[
ez2(s−τ)−1

]}
ds

)

≤ −a11x∗1
∣∣∣ez1(t) −1

∣∣∣+a12x∗2
∣∣∣ez2(t−τ) −1

∣∣∣+ a12 (x∗2)
2

1+ x∗2

∣∣∣ez2(t−τ) −1
∣∣∣

+a11x∗1

∫ t

t−τ
ez1(s)

{
a11x∗1

∣∣∣ez1(s−τ)−1
∣∣∣+a12x∗2

∣∣∣ez2(s−τ)−1
∣∣∣

+
a12 (x∗2)

2

1+ x∗2

∣∣∣ez2(s−τ)−1
∣∣∣
}

ds (3.19)
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By Theorem 3.1, we know that there exists a T > 0, such that x∗1ez1(t) = x1(t) ≤ M1 for t ≥ T .
Hence for t ≥ T + τ, we have

D+V11(t) ≤ −a11x∗1
∣∣∣ez1(t) −1

∣∣∣+ a12x∗2 (1+2x∗2)
1+ x∗2

∣∣∣ez2(t−τ) −1
∣∣∣

+a11M1

∫ t

t−τ

{
a11x∗1

∣∣∣ez1(s−τ)−1
∣∣∣+a12x∗2

∣∣∣ez2(s−τ)−1
∣∣∣

+
a12 (x∗2)

2

1+ x∗2

∣∣∣ez2(s−τ)−1
∣∣∣
}

ds (3.20)

Define

V12(t) = a11M1

∫ t

t−τ

∫ t

s

{
a11x∗1

∣∣∣ez1(θ−τ)−1
∣∣∣+a12x∗2

∣∣∣ez2(θ−τ)−1
∣∣∣

+
a12 (x∗2)

2

1+ x∗2

∣∣∣ez2(θ−τ)−1
∣∣∣
}

dθds (3.21)

then we have

D+V12(t) = τ
[
a2

11M1x∗1
∣∣∣ez1(t−τ) −1

∣∣∣+a11a12M1x∗2
∣∣∣ez2(t−τ) −1

∣∣∣

+
a11a12M1 (x∗2)

2

1+ x∗2

∣∣∣ez2(t−τ) −1
∣∣∣
]

−a11M1

∫ t

t−τ

{
a11x∗1

∣∣∣ez1(s−τ)−1
∣∣∣+a12x∗2

∣∣∣ez2(s−τ)−1
∣∣∣

+
a12 (x∗2)

2

1+ x∗2

∣∣∣ez2(s−τ)−1
∣∣∣
}

ds (3.22)

Define

V13(t) = a2
11M1x∗1τ

∫ t

t−τ

∣∣∣ez1(s)−1
∣∣∣ds

+
a12x∗2 (1+2x∗2)

1+ x∗2
(1+a11M1τ)

∫ t

t−τ

∣∣∣ez2(s)−1
∣∣∣ds (3.23)

then we have

D+V13(t) = a2
11M1x∗1τ

[∣∣∣ez1(t) −1
∣∣∣−

∣∣∣ez1(t−τ) −1
∣∣∣
]

+
a12x∗2 (1+2x∗2)

1+ x∗2
(1+a11M1τ)

[∣∣∣ez2(t) −1
∣∣∣−

∣∣∣ez2(t−τ) −1
∣∣∣
]

(3.24)

Now we define a Lyapunov functional V1(t) as

V1(t) = V11(t)+V12(t)+V13(t) (3.25)
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Then we have from (3.20)-(3.25) that for t ≥ T + τ

D+V1(t) ≤ −a11x∗1
∣∣∣ez1(t) −1

∣∣∣+ a12x∗2 (1+2x∗2)
1+ x∗2

∣∣∣ez2(t−τ) −1
∣∣∣+a11M1

∫ t

t−τ

{
a11x∗1

∣∣∣ez1(s−τ)−1
∣∣∣+a12x∗2

∣∣∣ez2(s−τ)−1
∣∣∣

+
a12 (x∗2)

2

1+ x∗2

∣∣∣ez2(s−τ)−1
∣∣∣
}

ds+a2
11M1x∗1τ

∣∣∣ez1(t−τ)−1
∣∣∣+a11a12M1x∗2τ

∣∣∣ez2(t−τ) −1
∣∣∣

+
a11a12M1τ(x∗2)

2

1+ x∗2

∣∣∣ez2(t−τ) −1
∣∣∣−a11M1

∫ t

t−τ

{
a11x∗1

∣∣∣ez1(s−τ)−1
∣∣∣+a12x∗2

∣∣∣ez2(s−τ)−1
∣∣∣

+
a12 (x∗2)

2

1+ x∗2

∣∣∣ez2(s−τ)−1
∣∣∣
}

ds+a2
11M1x∗1τ

[∣∣∣ez1(t) −1
∣∣∣−

∣∣∣ez1(t−τ) −1
∣∣∣
]

+
a12x∗2 (1+2x∗2)

1+ x∗2
(1+a11M1τ)

[∣∣∣ez2(t) −1
∣∣∣−

∣∣∣ez2(t−τ) −1
∣∣∣
]

= −a11 (1−a11M1τ)x∗1
∣∣∣ez1(t) −1

∣∣∣+ a12 (1+2x∗2)
1+ x∗2

(1+a11M1τ)x∗2
∣∣∣ez2(t) −1

∣∣∣

= −β11x∗1
∣∣∣ez1(t) −1

∣∣∣−β12x∗2
∣∣∣ez2(t) −1

∣∣∣ (3.26)

Equation (3.16) can be rewritten as

dz2(t)
dt

= −a22x∗2
[
ez2(t) −1

]
− a21x∗1

1+ x1(t − τ)

[
ez1(t−τ)−1

]

+
a21 (x∗1)

2

(1+ x∗1) [1+ x1(t − τ)]

[
ez1(t−τ)−1

]
+a22x∗2

[
ez2(t) − ez2(t−τ)

]

= −a22x∗2
[
ez2(t) −1

]
− a21x∗1

1+ x1(t − τ)

[
ez1(t−τ)−1

]

+
a21 (x∗1)

2

(1+ x∗1) [1+ x1(t − τ)]

[
ez1(t−τ)−1

]
+a22x∗2

∫ t

t−τ
ez2(s) dz2(s)

ds
ds

= −a22x∗2
[
ez2(t) −1

]
− a21x∗1

1+ x1(t − τ)

[
ez1(t−τ)−1

]

+
a21 (x∗1)

2

(1+ x∗1) [1+ x1(t − τ)]

[
ez1(t−τ)−1

]

+a22x∗2

∫ t

t−τ
ez2(s)

{
−a22x∗2

[
ez2(s−τ)−1

]

− a21x∗1
1+ x1(s− τ)

[
ez1(s−τ)−1

]

+
a21 (x∗1)

2

(1+ x∗1) [1+ x1(s− τ)]

[
ez1(s−τ)−1

]}
ds

(3.27)
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Let

V21(t) = |z2(t)| (3.28)

Then, by (3.27) and (3.28), the upper right Dini derivative of V21(t) along the solution of (3.15)
and (3.16) is given by

D+V21(t) =
dz2(t)

dt
· signz2(t)

= signz2(t) ·
(
−a22x∗2

[
ez2(t) −1

]
− a21x∗1

1+ x1(t − τ)

[
ez1(t−τ) −1

]

+
a21 (x∗1)

2

(1+ x∗1) [1+ x1(t − τ)]

[
ez1(t−τ) −1

]

+a22x∗2

∫ t

t−τ
ez2(s)

{
−a22x∗2

[
ez2(s−τ)−1

]
− a21x∗1

1+ x1(s− τ)

[
ez1(s−τ)−1

]

+
a21 (x∗1)

2

(1+ x∗1) [1+ x1(s− τ)]

[
ez1(s−τ)−1

]}
ds

)

= −a22x∗2
[
ez2(t) −1

]
· signz2(t)−

a21x∗1
1+ x1(t − τ)

[
ez1(t−τ) −1

]
· signz2(t)

+
a21 (x∗1)

2

(1+ x∗1) [1+ x1(t − τ)]

[
ez1(t−τ) −1

]
· signz2(t)

+ · signz2(t)
(

a22x∗2

∫ t

t−τ
ez2(s)

{
−a22x∗2

[
ez2(s−τ)−1

]

− a21x∗1
1+ x1(s− τ)

[
ez1(s−τ)−1

]

+
a21 (x∗1)

2

(1+ x∗1) [1+ x1(s− τ)]

[
ez1(s−τ)−1

]}
ds

)

≤ −a22x∗2
∣∣∣ez2(t) −1

∣∣∣+a21x∗1
∣∣∣ez1(t−τ) −1

∣∣∣+ a21 (x∗1)
2

1+ x∗1

∣∣∣ez1(t−τ) −1
∣∣∣

+a22x∗2

∫ t

t−τ
ez2(s)

{
a22x∗2

∣∣∣ez2(s−τ)−1
∣∣∣+a21x∗1

∣∣∣ez1(s−τ)−1
∣∣∣

+
a21 (x∗1)

2

1+ x∗1

∣∣∣ez1(s−τ)−1
∣∣∣
}

ds (3.29)
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By Theorem 3.1, we know that there exists a T > 0, such that x∗2ez2(t) = x2(t) ≤ M2 for t ≥ T .
Hence for t ≥ T + τ, we have

D+V21(t) ≤ −a22x∗2
∣∣∣ez2(t) −1

∣∣∣+ a21x∗1 (1+2x∗1)
1+ x∗1

∣∣∣ez1(t−τ) −1
∣∣∣

+a22M2

∫ t

t−τ

{
a22x∗2

∣∣∣ez2(s−τ)−1
∣∣∣+a21x∗1

∣∣∣ez1(s−τ)−1
∣∣∣

+
a21 (x∗1)

2

1+ x∗1

∣∣∣ez1(s−τ)−1
∣∣∣
}

ds (3.30)

Define

V22(t) = a22M2

∫ t

t−τ

∫ t

s

{
a22x∗2

∣∣∣ez2(θ−τ)−1
∣∣∣+a21x∗1

∣∣∣ez1(θ−τ)−1
∣∣∣

+
a21 (x∗1)

2

1+ x∗1

∣∣∣ez1(θ−τ)−1
∣∣∣
}

dθds (3.31)

then we have

D+V22(t) = τ
[
a2

22M2x∗2
∣∣∣ez2(t−τ) −1

∣∣∣+a21a22M2x∗1
∣∣∣ez1(t−τ)−1

∣∣∣ +
a21a22M2 (x∗1)

2

1+ x∗1

∣∣∣ez1(t−τ)−1
∣∣∣
]

−a22M2

∫ t

t−τ

{
a22x∗2

∣∣∣ez2(s−τ)−1
∣∣∣+a21x∗1

∣∣∣ez1(s−τ)−1
∣∣∣ +

a21 (x∗1)
2

1+ x∗1

∣∣∣ez1(s−τ)−1
∣∣∣
}

ds

(3.32)

Define

V23(t) = a2
22M2x∗2τ

∫ t

t−τ

∣∣∣ez2(s)−1
∣∣∣ds

+
a21x∗1 (1+2x∗1)

1+ x∗1
(1+a22M2τ)

∫ t

t−τ

∣∣∣ez1(s)−1
∣∣∣ds (3.33)

then we have

D+V23(t) = a2
22M2x∗2τ

[∣∣∣ez2(t) −1
∣∣∣−

∣∣∣ez2(t−τ) −1
∣∣∣
]

+
a21x∗1 (1+2x∗1)

1+ x∗1
(1+a22M2τ)

[∣∣∣ez1(t) −1
∣∣∣−

∣∣∣ez1(t−τ) −1
∣∣∣
]

(3.34)

Now we define a Lyapunov functional V2(t) as

V2(t) = V21(t)+V22(t)+V23(t) (3.35)

Then we have from (3.30)-(3.35) that for t ≥ T + τ
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D+V2(t) ≤ −a22x∗2
∣∣∣ez2(t) −1

∣∣∣+ a21x∗1 (1+2x∗1)
1+ x∗1

∣∣∣ez1(t−τ) −1
∣∣∣

+a22M2

∫ t

t−τ

{
a22x∗2

∣∣∣ez2(s−τ)−1
∣∣∣+a21x∗1

∣∣∣ez1(s−τ)−1
∣∣∣

+
a21 (x∗1)

2

1+ x∗1

∣∣∣ez1(s−τ)−1
∣∣∣
}

ds

+a2
22M2x∗2τ

∣∣∣ez2(t−τ) −1
∣∣∣+a21a22M2x∗1τ

∣∣∣ez1(t−τ) −1
∣∣∣

+
a21a22M2τ(x∗1)

2

1+ x∗1

∣∣∣ez1(t−τ)−1
∣∣∣

−a22M2

∫ t

t−τ

{
a22x∗2

∣∣∣ez2(s−τ)−1
∣∣∣+a21x∗1

∣∣∣ez1(s−τ)−1
∣∣∣

+
a21 (x∗1)

2

1+ x∗1

∣∣∣ez1(s−τ)−1
∣∣∣
}

ds

+a2
22M2x∗2τ

[∣∣∣ez2(t) −1
∣∣∣−

∣∣∣ez2(t−τ) −1
∣∣∣
]

+
a21x∗1 (1+2x∗1)

1+ x∗1
(1+a22M2τ)

[∣∣∣ez1(t) −1
∣∣∣−

∣∣∣ez1(t−τ) −1
∣∣∣
]

=
a21 (1+2x∗1)

1+ x∗1
(1+a22M2τ)x∗1

∣∣∣ez1(t) −1
∣∣∣

−a22 (1−a22M2τ)x∗2
∣∣∣ez2(t) −1

∣∣∣

= −β21x∗1
∣∣∣ez1(t) −1

∣∣∣−β22x∗2
∣∣∣ez2(t) −1

∣∣∣ (3.36)

According to assumptions (3.12) and (3.13), we know that B ≡ (βi j)2×2 is an M-matrix (see
[1]); hence there exist positive constants ρi (i = 1,2) such that

ρ1β11 +ρ2β21 = δ1 > 0 , ρ1β12 +ρ2β22 = δ2 > 0 (3.37)

Now define a Lyapunov functional V (t) as

V (t) = ρ1V1(t)+ρ2V2(t) (3.38)
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Then we have from (3.38), (3.26), (3.36), and (3.37) that for t ≥ T + τ

D+V (t) = ρ1D+V1(t)+ρ2D+V2(t)

≤ ρ1

[
−β11x∗1

∣∣∣ez1(t) −1
∣∣∣−β12x∗2

∣∣∣ez2(t) −1
∣∣∣
]

+ρ2

[
−β21x∗1

∣∣∣ez1(t) −1
∣∣∣−β22x∗2

∣∣∣ez2(t) −1
∣∣∣
]

= −(ρ1β11 +ρ2β21)x∗1
∣∣∣ez1(t) −1

∣∣∣

−(ρ1β12 +ρ2β22)x∗2
∣∣∣ez2(t) −1

∣∣∣

= −δ1x∗1
∣∣∣ez1(t) −1

∣∣∣−δ2x∗2
∣∣∣ez2(t) −1

∣∣∣ (3.39)

Since the system (3.1) is uniformly persistent, one can see that there exist positive constants
mi (i = 1,2) and a T ∗ > T + τ such that x∗i ezi(t) = xi(t) ≥ mi (i = 1,2) for t ≥ T ∗. Using the Mean
Value Theorem, one obtains x∗i

∣∣∣ezi(t) −1
∣∣∣ = x∗i eθi(t) |zi(t)| ≥ mi |zi(t)| (i = 1,2), where x∗i eθi(t) lies

between xi(t) and x∗i . Let δ = min{δ1m1,δ2m2}. Then it follows from (3.39) that for t ≥ T ∗

D+V (t) ≤ −δ1x∗1
∣∣∣ez1(t) −1

∣∣∣−δ2x∗2
∣∣∣ez2(t) −1

∣∣∣
≤ −δ1m1 |z1(t)|−δ2m2 |z2(t)|
≤ −δ(|z1(t)|+ |z2(t)|) (3.40)

Let w(s) = δs, then w is nonnegative continuous and nondecreasing, w(0) = 0 and w(s) > 0
for s > 0. It follow from (3.40) that for t ≥ T ∗

D+V (t) ≤ −δ(|z1(t)|+ |z2(t)|)

≤ −δ
√

z2
1(t)+ z2

2(t)

= −w(‖z(t)‖) (3.41)

Let u(s) = ρs, where ρ = min{ρ1,ρ2}, then u is nonnegative continuous and nondecreasing,
u(0) = 0, u(s) > 0 for s > 0 and lim

s→∞
u(s) = +∞. Now, we want to show that V (t) ≥ u(‖z(t)‖). It

follow from (3.25), (3.35), and (3.38) that for t ≥ T ∗

V (t) = ρ1V1(t)+ρ2V2(t)

= ρ1 [V11(t)+V12(t)+V13(t)]+ρ2 [V21(t)+V22(t)+V23(t)]

≥ ρ1V11(t)+ρ2V21(t)

= ρ1 |z1(t)|+ρ2 |z2(t)|
≥ ρ(|z1(t)|+ |z2(t)|)

≥ ρ
√

z2
1(t)+ z2

2(t)

= u(‖z(t)‖) (3.42)
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we can conclude from the Lyapunov-Kransovskii theorem (see [8, Theorem 5.1, p.27; Corol-
lary 5.2, p.30]) and (3.38) that the zero solution of (3.15) and (3.16) is globally asymptotically
stable, and hence the unique positive equilibrium point E∗ of the system (3.1) with initial condi-
tions (3.2) is globally asymptotically stable. This completes the proof.

4 Examples

In this section, we want to illustrate our results by some examples.

Example 4.1 Consider the following system:

ẋ1(t) = x1(t)
[

1−2x1(t)−
x2(t)

1+ x2(t)

]

ẋ2(t) = x2(t)
[

1−2x2(t)−
x1(t)

1+ x1(t)

] (4.1)

Comparing the system (4.1) with the system (2.1), we get r1 = r2 = a12 = a21 = 1 and a11 = a22 =

2. So the system (4.1) has the unique positive equilibrium point E∗ ≡ (
√

3−1
2 ,

√
3−1
2 ). It is easy to

verify that the system (4.1) satisfies all assumptions in (2.4) and (2.6). From Lemma 2.2, we see
that the unique positive equilibrium point E∗ is locally asymptotically stable. Using Theorems 2.1
and 2.3, we know that the unique positive equilibrium point E∗ is globally asymptotically stable.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1

x 2

(0.2,0.8)

(0.8,0.7)

(0.8,0.2)(0.1,0.2)

Figure 4.1: Phase portrait of the system (4.1).
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Example 4.2 Consider the following system:

ẋ1(t) = x1(t)
[

1−2x1(t − τ)− x2(t − τ)
1+ x2(t − τ)

]

ẋ2(t) = x2(t)
[

1−2x2(t − τ)− x1(t − τ)
1+ x1(t − τ)

] (4.2)

Comparing the system (4.2) with the system (3.1), we get r1 = r2 = a12 = a21 = 1 and a11 =

a22 = 2. So the system (4.2) has the unique positive equilibrium point E∗ ≡ (
√

3−1
2 ,

√
3−1
2 ). It

is easy to verify that the system (4.2) satisfies all assumptions in (3.3), (3.10), (3.12) and (3.13).
Using Theorem 3.1, we know that the system (3.2) is uniformly persistent. From Theorem 3.2, we
know that the unique positive equilibrium point E∗ is globally asymptotically stable provided that
β11 > 0, β22 > 0, and β11β22 −β12β21 > 0, where

β11 = 2(1−2M1τ) ,

β12 =
(√

3−3
)

(1+2M1τ) ,

β21 =
(√

3−3
)

(1+2M2τ) ,

β22 = 2(1−2M2τ) ,

M1 =
1
2

eτ ,

M2 =
2M1 +1

2(1+M1)
· exp

{
2M1 +1
1+M1

τ
}

.
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Figure 4.2: Phase portrait of the system (4.2) with τ = 0.1.
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時滯式競爭系統之持久性和整體穩定性 

 
陳信志*    何肇寶* 

摘    要 

本篇論文主要探討具時滯參數之競爭系統的動態行為。首先，我們利用三種不同方法分析不具

時滯參數之競爭系統的整體穩定性。而後討論具時滯參數之競爭系統，在適當條件下系統之解是均

勻持久的，進而得到此系統之唯一正均衡點的整體穩定性的充分條件。最後，我們舉例說明上述結

果。 
 
關鍵詞：競爭系統、均衡點穩定性、Dulac's 法則、Ponicaré-Bendixson 定理、極限環、均勻持

久性、Lyapunov函數、整體漸近穩定。 
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